- Browse by Author
Browsing by Author "Alber, Mark"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow(The Royal Society, 2017-11) Xu, Shixin; Xu, Zhiliang; Kim, Oleg V.; Litvinov, Rustem I.; Weisel, John W.; Alber, Mark; Medicine, School of MedicineThromboembolism, one of the leading causes of morbidity and mortality worldwide, is characterized by formation of obstructive intravascular clots (thrombi) and their mechanical breakage (embolization). A novel two-dimensional multi-phase computational model is introduced that describes active interactions between the main components of the clot, including platelets and fibrin, to study the impact of various physiologically relevant blood shear flow conditions on deformation and embolization of a partially obstructive clot with variable permeability. Simulations provide new insights into mechanisms underlying clot stability and embolization that cannot be studied experimentally at this time. In particular, model simulations, calibrated using experimental intravital imaging of an established arteriolar clot, show that flow-induced changes in size, shape and internal structure of the clot are largely determined by two shear-dependent mechanisms: reversible attachment of platelets to the exterior of the clot and removal of large clot pieces. Model simulations predict that blood clots with higher permeability are more prone to embolization with enhanced disintegration under increasing shear rate. In contrast, less permeable clots are more resistant to rupture due to shear rate-dependent clot stiffening originating from enhanced platelet adhesion and aggregation. These results can be used in future to predict risk of thromboembolism based on the data about composition, permeability and deformability of a clot under specific local haemodynamic conditions.Item Multi-component model of intramural hematoma(Elsevier, 2017) Bukač, Martina; Alber, Mark; Medicine, School of MedicineA novel multi-component model is introduced for studying interaction between blood flow and deforming aortic wall with intramural hematoma (IMH). The aortic wall is simulated by a composite structure submodel representing material properties of the three main wall layers. The IMH is described by a poroelasticity submodel which takes into account both the pressure inside hematoma and its deformation. The submodel of the hematoma is fully coupled with the aortic submodel as well as with the submodel of the pulsatile blood flow. Model simulations are used to investigate the relation between the peak wall stress, hematoma thickness and permeability in patients of different age. The results indicate that an increase in hematoma thickness leads to larger wall stress, which is in agreement with clinical data. Further simulations demonstrate that a hematoma with smaller permeability results in larger wall stress, suggesting that blood coagulation in hematoma might increase its mechanical stability. This is in agreement with previous experimental observations of coagulation having a beneficial effect on the condition of a patient with the IMH.Item Sizing it up: The mechanical feedback hypothesis of organ growth regulation(Elsevier, 2014) Buchmann, Amy; Alber, Mark; Zartman, Jeremiah J.; Medicine, School of MedicineThe question of how the physical dimensions of animal organs are specified has long fascinated both experimentalists and computational scientists working in the field of developmental biology. Research over the last few decades has identified many of the genes and signaling pathways involved in organizing the emergent multi-scale features of growth and homeostasis. However, an integrated model of organ growth regulation is still unrealized due to the numerous feedback control loops found within and between intercellular signaling pathways as well as a lack of understanding of the exact role of mechanotransduction. Here, we review several computational and experimental studies that have investigated the mechanical feedback hypothesis of organ growth control, which postulates that mechanical forces are important for regulating the termination of growth and hence the final physical dimensions of organs. In particular, we highlight selected computational studies that have focused on the regulation of growth of the Drosophila wing imaginal disc. In many ways, these computational and theoretical approaches continue to guide experimental inquiry. We demonstrate using several examples how future progress in dissecting the crosstalk between the genetic and biophysical mechanisms controlling organ growth might depend on the close coupling between computational and experimental approaches, as well as comparison of growth control mechanisms in other systems.