- Browse by Author
Browsing by Author "Albanes, Demetrius"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Beyond GWAS of Colorectal Cancer: Evidence of Interaction with Alcohol Consumption and Putative Causal Variant for the 10q24.2 Region(American Association for Cancer Research, 2022) Jordahl, Kristina M.; Shcherbina, Anna; Kim, Andre E.; Su, Yu-Ru; Lin, Yi; Wang, Jun; Qu, Conghui; Albanes, Demetrius; Arndt, Volker; Baurley, James W.; Berndt, Sonja I.; Bien, Stephanie A.; Bishop, D. Timothy; Bouras, Emmanouil; Brenner, Hermann; Buchanan, Daniel D.; Budiarto, Arif; Campbell, Peter T.; Carreras-Torres, Robert; Casey, Graham; Cenggoro, Tjeng Wawan; Chan, Andrew T.; Conti, David V.; Dampier, Christopher H.; Devall, Matthew A.; Díez-Obrero, Virginia; Dimou, Niki; Drew, David A.; Figueiredo, Jane C.; Gallinger, Steven; Giles, Graham G.; Gruber, Stephen B.; Gsur, Andrea; Gunter, Marc J.; Hampel, Heather; Harlid, Sophia; Harrison, Tabitha A.; Hidaka, Akihisa; Hoffmeister, Michael; Huyghe, Jeroen R.; Jenkins, Mark A.; Joshi, Amit D.; Keku, Temitope O.; Larsson, Susanna C.; Le Marchand, Loic; Lewinger, Juan Pablo; Li, Li; Mahesworo, Bharuno; Moreno, Victor; Morrison, John L.; Murphy, Neil; Nan, Hongmei; Nassir, Rami; Newcomb, Polly A.; Obón-Santacana, Mireia; Ogino, Shuji; Ose, Jennifer; Pai, Rish K.; Palmer, Julie R.; Papadimitriou, Nikos; Pardamean, Bens; Peoples, Anita R.; Pharoah, Paul D. P.; Platz, Elizabeth A.; Potter, John D.; Prentice, Ross L.; Rennert, Gad; Ruiz-Narvaez, Edward; Sakoda, Lori C.; Scacheri, Peter C.; Schmit, Stephanie L.; Schoen, Robert E.; Slattery, Martha L.; Stern, Mariana C.; Tangen, Catherine M.; Thibodeau, Stephen N.; Thomas, Duncan C.; Tian, Yu; Tsilidis, Konstantinos K.; Ulrich, Cornelia M.; van Duijnhoven, Franzel J. B.; Van Guelpen, Bethany; Visvanathan, Kala; Vodicka, Pavel; White, Emily; Wolk, Alicja; Woods, Michael O.; Wu, Anna H.; Zemlianskaia, Natalia; Chang-Claude, Jenny; Gauderman, W. James; Hsu, Li; Kundaje, Anshul; Peters, Ulrike; Epidemiology, Richard M. Fairbanks School of Public HealthBackground: Currently known associations between common genetic variants and colorectal cancer explain less than half of its heritability of 25%. As alcohol consumption has a J-shape association with colorectal cancer risk, nondrinking and heavy drinking are both risk factors for colorectal cancer. Methods: Individual-level data was pooled from the Colon Cancer Family Registry, Colorectal Transdisciplinary Study, and Genetics and Epidemiology of Colorectal Cancer Consortium to compare nondrinkers (≤1 g/day) and heavy drinkers (>28 g/day) with light-to-moderate drinkers (1-28 g/day) in GxE analyses. To improve power, we implemented joint 2df and 3df tests and a novel two-step method that modifies the weighted hypothesis testing framework. We prioritized putative causal variants by predicting allelic effects using support vector machine models. Results: For nondrinking as compared with light-to-moderate drinking, the hybrid two-step approach identified 13 significant SNPs with pairwise r2 > 0.9 in the 10q24.2/COX15 region. When stratified by alcohol intake, the A allele of lead SNP rs2300985 has a dose-response increase in risk of colorectal cancer as compared with the G allele in light-to-moderate drinkers [OR for GA genotype = 1.11; 95% confidence interval (CI), 1.06-1.17; OR for AA genotype = 1.22; 95% CI, 1.14-1.31], but not in nondrinkers or heavy drinkers. Among the correlated candidate SNPs in the 10q24.2/COX15 region, rs1318920 was predicted to disrupt an HNF4 transcription factor binding motif. Conclusions: Our study suggests that the association with colorectal cancer in 10q24.2/COX15 observed in genome-wide association study is strongest in nondrinkers. We also identified rs1318920 as the putative causal regulatory variant for the region. Impact: The study identifies multifaceted evidence of a possible functional effect for rs1318920.Item Exploratory genome-wide interaction analysis of non-steroidal anti-inflammatory drugs and predicted gene expression on colorectal cancer risk(American Association for Cancer Research, 2020-09) Wang, Xiaoliang; Su, Yu-Ru; Petersen, Paneen S.; Bien, Stephanie; Schmit, Stephanie L.; Drew, David A.; Albanes, Demetrius; Berndt, Sonja I.; Brenner, Hermann; Campbell, Peter T.; Casey, Graham; Chang-Claude, Jenny; Gallinger, Steven J.; Gruber, Stephen B.; Haile, Robert W.; Harrison, Tabitha A.; Hoffmeister, Michael; Jacobs, Eric J.; Jenkins, Mark A.; Joshi, Amit D.; Li, Li; Lin, Yi; Lindor, Noralane M.; Le Marchand, Loïc; Martin, Vicente; Milne, Roger; Maclnnis, Robert; Moreno, Victor; Nan, Hongmei; Newcomb, Polly A.; Potter, John D.; Rennert, Gad; Rennert, Hedy; Slattery, Martha L.; Thibodeau, Steve N.; Weinstein, Stephanie J.; Woods, Michael O.; Chan, Andrew T.; White, Emily; Hsu, Li; Peters, Ulrike; Global Health, School of Public HealthBackground: Regular use of nonsteroidal anti-inflammatory drugs (NSAID) is associated with lower risk of colorectal cancer. Genome-wide interaction analysis on single variants (G × E) has identified several SNPs that may interact with NSAIDs to confer colorectal cancer risk, but variations in gene expression levels may also modify the effect of NSAID use. Therefore, we tested interactions between NSAID use and predicted gene expression levels in relation to colorectal cancer risk. Methods: Genetically predicted gene expressions were tested for interaction with NSAID use on colorectal cancer risk among 19,258 colorectal cancer cases and 18,597 controls from 21 observational studies. A Mixed Score Test for Interactions (MiSTi) approach was used to jointly assess G × E effects which are modeled via fixed interaction effects of the weighted burden within each gene set (burden) and residual G × E effects (variance). A false discovery rate (FDR) at 0.2 was applied to correct for multiple testing. Results: Among the 4,840 genes tested, genetically predicted expression levels of four genes modified the effect of any NSAID use on colorectal cancer risk, including DPP10 (PG×E = 1.96 × 10-4), KRT16 (PG×E = 2.3 × 10-4), CD14 (PG×E = 9.38 × 10-4), and CYP27A1 (PG×E = 1.44 × 10-3). There was a significant interaction between expression level of RP11-89N17 and regular use of aspirin only on colorectal cancer risk (PG×E = 3.23 × 10-5). No interactions were observed between predicted gene expression and nonaspirin NSAID use at FDR < 0.2. Conclusions: By incorporating functional information, we discovered several novel genes that interacted with NSAID use.Item Genetically predicted circulating concentrations of micronutrients and risk of colorectal cancer among individuals of European descent: a Mendelian randomization study(Elsevier, 2021) Tsilidis, Konstantinos K.; Papadimitriou, Nikos; Dimou, Niki; Gill, Dipender; Lewis, Sarah J.; Martin, Richard M.; Murphy, Neil; Markozannes, Georgios; Zuber, Verena; Cross, Amanda J.; Burrows, Kimberley; Lopez, David S.; Key, Timothy J.; Travis, Ruth C.; Perez-Cornago, Aurora; Hunter, David J.; van Duijnhoven, Fränzel J. B.; Albanes, Demetrius; Arndt, Volker; Berndt, Sonja I.; Bézieau, Stéphane; Bishop, D. Timothy; Boehm, Juergen; Brenner, Hermann; Burnett-Hartman, Andrea; Campbell, Peter T.; Casey, Graham; Castellví-Bel, Sergi; Chan, Andrew T.; Chang-Claude, Jenny; de la Chapelle, Albert; Figueiredo, Jane C.; Gallinger, Steven J.; Giles, Graham G.; Goodman, Phyllis J.; Gsur, Andrea; Hampe, Jochen; Hampel, Heather; Hoffmeister, Michael; Jenkins, Mark A.; Keku, Temitope O.; Kweon, Sun-Seog; Larsson, Susanna C.; Le Marchand, Loic; Li, Christopher I.; Li, Li; Lindblom, Annika; Martín, Vicente; Milne, Roger L.; Moreno, Victor; Nan, Hongmei; Nassir, Rami; Newcomb, Polly A.; Offit, Kenneth; Pharoah, Paul D. P.; Platz, Elizabeth A.; Potter, John D.; Qi, Lihong; Rennert, Gad; Sakoda, Lori C.; Schafmayer, Clemens; Slattery, Martha L.; Snetselaar, Linda; Schenk, Jeanette; Thibodeau, Stephen N.; Ulrich, Cornelia M.; Van Guelpen, Bethany; Harlid, Sophia; Visvanathan, Kala; Vodickova, Ludmila; Wang, Hansong; White, Emily; Wolk, Alicja; Woods, Michael O.; Wu, Anna H.; Zheng, Wei; Bueno-de-Mesquita, Bas; Boutron-Ruault, Marie-Christine; Hughes, David J.; Jakszyn, Paula; Kühn, Tilman; Palli, Domenico; Riboli, Elio; Giovannucci, Edward L.; Banbury, Barbara L.; Gruber, Stephen B.; Peters, Ulrike; Gunter, Marc J.; Epidemiology, School of Public HealthBackground: The literature on associations of circulating concentrations of minerals and vitamins with risk of colorectal cancer is limited and inconsistent. Evidence from randomized controlled trials (RCTs) to support the efficacy of dietary modification or nutrient supplementation for colorectal cancer prevention is also limited. Objectives: To complement observational and RCT findings, we investigated associations of genetically predicted concentrations of 11 micronutrients (β-carotene, calcium, copper, folate, iron, magnesium, phosphorus, selenium, vitamin B-6, vitamin B-12, and zinc) with colorectal cancer risk using Mendelian randomization (MR). Methods: Two-sample MR was conducted using 58,221 individuals with colorectal cancer and 67,694 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry. Inverse variance-weighted MR analyses were performed with sensitivity analyses to assess the impact of potential violations of MR assumptions. Results: Nominally significant associations were noted for genetically predicted iron concentration and higher risk of colon cancer [ORs per SD (ORSD): 1.08; 95% CI: 1.00, 1.17; P value = 0.05] and similarly for proximal colon cancer, and for vitamin B-12 concentration and higher risk of colorectal cancer (ORSD: 1.12; 95% CI: 1.03, 1.21; P value = 0.01) and similarly for colon cancer. A nominally significant association was also noted for genetically predicted selenium concentration and lower risk of colon cancer (ORSD: 0.98; 95% CI: 0.96, 1.00; P value = 0.05) and similarly for distal colon cancer. These associations were robust to sensitivity analyses. Nominally significant inverse associations were observed for zinc and risk of colorectal and distal colon cancers, but sensitivity analyses could not be performed. None of these findings survived correction for multiple testing. Genetically predicted concentrations of β-carotene, calcium, copper, folate, magnesium, phosphorus, and vitamin B-6 were not associated with disease risk. Conclusions: These results suggest possible causal associations of circulating iron and vitamin B-12 (positively) and selenium (inversely) with risk of colon cancer.Item Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels(Nature Publishing Group, 2018-01-17) Jiang, Xia; O’Reilly, Paul F.; Aschard, Hugues; Hsu, Yi-Hsiang; Richards, J. Brent; Dupuis, Josée; Ingelsson, Erik; Karasik, David; Pilz, Stefan; Berry, Diane; Kestenbaum, Bryan; Zheng, Jusheng; Luan, Jianan; Sofianopoulou, Eleni; Streeten, Elizabeth A.; Albanes, Demetrius; Lutsey, Pamela L.; Yao, Lu; Tang, Weihong; Econs, Michael J.; Wallaschofski, Henri; Völzke, Henry; Zhou, Ang; Power, Chris; McCarthy, Mark I.; Michos, Erin D.; Boerwinkle, Eric; Weinstein, Stephanie J.; Freedman, Neal D.; Huang, Wen-Yi; Van Schoor, Natasja M.; Velde, Nathalie van der; de Groot, Lisette C. P. G. M.; Enneman, Anke; Cupples, L. Adrienne; Booth, Sarah L.; Vasan, Ramachandran S.; Liu, Ching-Ti; Zhou, Yanhua; Ripatti, Samuli; Ohlsson, Claes; Vandenput, Liesbeth; Lorentzon, Mattias; Eriksson, Johan G.; Shea, M. Kyla; Houston, Denise K.; Kritchevsky, Stephen B.; Liu, Yongmei; Lohman, Kurt K.; Ferrucci, Luigi; Peacock, Munro; Gieger, Christian; Beekman, Marian; Slagboom, Eline; Deelen, Joris; Heemst, Diana van; Kleber, Marcus E.; März, Winfried; de Boer, Ian H.; Wood, Alexis C.; Rotter, Jerome I.; Rich, Stephen S.; Robinson-Cohen, Cassianne; Heijer, Martin den; Jarvelin, Marjo-Riitta; Cavadino, Alana; Joshi, Peter K.; Wilson, James F.; Hayward, Caroline; Lind, Lars; Michaëlsson, Karl; Trompet, Stella; Zillikens, M. Carola; Uitterlinden, Andre G.; Rivadeneira, Fernando; Broer, Linda; Zgaga, Lina; Campbell, Harry; Theodoratou, Evropi; Farrington, Susan M.; Timofeeva, Maria; Dunlop, Malcolm G.; Valdes, Ana M.; Tikkanen, Emmi; Lehtimäki, Terho; Lyytikäinen, Leo-Pekka; Kähönen, Mika; Raitakari, Olli T.; Mikkilä, Vera; Ikram, M. Arfan; Sattar, Naveed; Jukema, J. Wouter; Wareham, Nicholas J.; Langenberg, Claudia; Forouhi, Nita G.; Gundersen, Thomas E.; Khaw, Kay-Tee; Butterworth, Adam S.; Danesh, John; Spector, Timothy; Wang, Thomas J.; Hyppönen, Elina; Kraft, Peter; Kiel, Douglas P.; Medicine, School of MedicineVitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7×10-9 at rs8018720 in SEC23A, and P = 1.9×10-14 at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levelsItem Genome-wide Interaction Study with Smoking for Colorectal Cancer Risk Identifies Novel Genetic Loci Related to Tumor Suppression, Inflammation, and Immune Response(American Association for Cancer Research, 2023) Carreras-Torres, Robert; Kim, Andre E.; Lin, Yi; Díez-Obrero, Virginia; Bien, Stephanie A.; Qu, Conghui; Wang, Jun; Dimou, Niki; Aglago, Elom K.; Albanes, Demetrius; Arndt, Volker; Baurley, James W.; Berndt, Sonja I.; Bézieau, Stéphane; Bishop, D. Timothy; Bouras, Emmanouil; Brenner, Hermann; Budiarto, Arif; Campbell, Peter T.; Casey, Graham; Chan, Andrew T.; Chang-Claude, Jenny; Chen, Xuechen; Conti, David V.; Dampier, Christopher H.; Devall, Matthew A. M.; Drew, David A.; Figueiredo, Jane C.; Gallinger, Steven; Giles, Graham G.; Gruber, Stephen B.; Gsur, Andrea; Gunter, Marc J.; Harrison, Tabitha A.; Hidaka, Akihisa; Hoffmeister, Michael; Huyghe, Jeroen R.; Jenkins, Mark A.; Jordahl, Kristina M.; Kawaguchi, Eric; Keku, Temitope O.; Kundaje, Anshul; Le Marchand, Loic; Lewinger, Juan Pablo; Li, Li; Mahesworo, Bharuno; Morrison, John L.; Murphy, Neil; Nan, Hongmei; Nassir, Rami; Newcomb, Polly A.; Obón-Santacana, Mireia; Ogino, Shuji; Ose, Jennifer; Pai, Rish K.; Palmer, Julie R.; Papadimitriou, Nikos; Pardamean, Bens; Peoples, Anita R.; Pharoah, Paul D. P.; Platz, Elizabeth A.; Rennert, Gad; Ruiz-Narvaez, Edward; Sakoda, Lori C.; Scacheri, Peter C.; Schmit, Stephanie L.; Schoen, Robert E.; Shcherbina, Anna; Slattery, Martha L.; Stern, Mariana C.; Su, Yu-Ru; Tangen, Catherine M.; Thomas, Duncan C.; Tian, Yu; Tsilidis, Konstantinos K.; Ulrich, Cornelia M.; van Duijnhoven, Fränzel J. B.; Van Guelpen, Bethany; Visvanathan, Kala; Vodicka, Pavel; Wawan Cenggoro, Tjeng; Weinstein, Stephanie J.; White, Emily; Wolk, Alicja; Woods, Michael O.; Hsu, Li; Peters, Ulrike; Moreno, Victor; Gauderman, W. James; Epidemiology, Richard M. Fairbanks School of Public HealthBackground: Tobacco smoking is an established risk factor for colorectal cancer. However, genetically defined population subgroups may have increased susceptibility to smoking-related effects on colorectal cancer. Methods: A genome-wide interaction scan was performed including 33,756 colorectal cancer cases and 44,346 controls from three genetic consortia. Results: Evidence of an interaction was observed between smoking status (ever vs. never smokers) and a locus on 3p12.1 (rs9880919, P = 4.58 × 10-8), with higher associated risk in subjects carrying the GG genotype [OR, 1.25; 95% confidence interval (CI), 1.20-1.30] compared with the other genotypes (OR <1.17 for GA and AA). Among ever smokers, we observed interactions between smoking intensity (increase in 10 cigarettes smoked per day) and two loci on 6p21.33 (rs4151657, P = 1.72 × 10-8) and 8q24.23 (rs7005722, P = 2.88 × 10-8). Subjects carrying the rs4151657 TT genotype showed higher risk (OR, 1.12; 95% CI, 1.09-1.16) compared with the other genotypes (OR <1.06 for TC and CC). Similarly, higher risk was observed among subjects carrying the rs7005722 AA genotype (OR, 1.17; 95% CI, 1.07-1.28) compared with the other genotypes (OR <1.13 for AC and CC). Functional annotation revealed that SNPs in 3p12.1 and 6p21.33 loci were located in regulatory regions, and were associated with expression levels of nearby genes. Genetic models predicting gene expression revealed that smoking parameters were associated with lower colorectal cancer risk with higher expression levels of CADM2 (3p12.1) and ATF6B (6p21.33). Conclusions: Our study identified novel genetic loci that may modulate the risk for colorectal cancer of smoking status and intensity, linked to tumor suppression and immune response. Impact: These findings can guide potential prevention treatments.Item Interactions between folate intake and genetic predictors of gene expression levels associated with colorectal cancer risk(Springer, 2022-11-07) Haas, Cameron B.; Su, Yu-Ru; Petersen, Paneen; Wang, Xiaoliang; Bien, Stephanie A.; Lin, Yi; Albanes, Demetrius; Weinstein, Stephanie J.; Jenkins, Mark A.; Figueiredo, Jane C.; Newcomb, Polly A.; Casey, Graham; Marchand, Loic Le; Campbell, Peter T.; Moreno, Victor; Potter, John D.; Sakoda, Lori C.; Slattery, Martha L.; Chan, Andrew T.; Li, Li; Giles, Graham G.; Milne, Roger L.; Gruber, Stephen B.; Rennert, Gad; Woods, Michael O.; Gallinger, Steven J.; Berndt, Sonja; Hayes, Richard B.; Huang, Wen-Yi; Wolk, Alicja; White, Emily; Nan, Hongmei; Nassir, Rami; Lindor, Noralane M.; Lewinger, Juan P.; Kim, Andre E.; Conti, David; Gauderman, W. James; Buchanan, Daniel D.; Peters, Ulrike; Hsu , Li; Epidemiology, Richard M. Fairbanks School of Public HealthObservational studies have shown higher folate consumption to be associated with lower risk of colorectal cancer (CRC). Understanding whether and how genetic risk factors interact with folate could further elucidate the underlying mechanism. Aggregating functionally relevant genetic variants in set-based variant testing has higher power to detect gene-environment (G × E) interactions and may provide information on the underlying biological pathway. We investigated interactions between folate consumption and predicted gene expression on colorectal cancer risk across the genome. We used variant weights from the PrediXcan models of colon tissue-specific gene expression as a priori variant information for a set-based G × E approach. We harmonized total folate intake (mcg/day) based on dietary intake and supplemental use across cohort and case-control studies and calculated sex and study specific quantiles. Analyses were performed using a mixed effects score tests for interactions between folate and genetically predicted expression of 4839 genes with available genetically predicted expression. We pooled results across 23 studies for a total of 13,498 cases with colorectal tumors and 13,918 controls of European ancestry. We used a false discovery rate of 0.2 to identify genes with suggestive evidence of an interaction. We found suggestive evidence of interaction with folate intake on CRC risk for genes including glutathione S-Transferase Alpha 1 (GSTA1; p = 4.3E-4), Tonsuko Like, DNA Repair Protein (TONSL; p = 4.3E-4), and Aspartylglucosaminidase (AGA: p = 4.5E-4). We identified three genes involved in preventing or repairing DNA damage that may interact with folate consumption to alter CRC risk. Glutathione is an antioxidant, preventing cellular damage and is a downstream metabolite of homocysteine and metabolized by GSTA1. TONSL is part of a complex that functions in the recovery of double strand breaks and AGA plays a role in lysosomal breakdown of glycoprotein.