- Browse by Author
Browsing by Author "Al-Zain, Afnan"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Evaluation of selected properties of a new root repair cement containing surface pre-reacted glass ionomer fillers(Springer, 2016) Yassen, Ghaeth H.; Huang, Ruijie; Al-Zain, Afnan; Yoshida, Takamitsu; Gregory, Richard L.; Platt, Jeffrey A.; Department of Biomedical and Applied Sciences, IU School of DentistryObjective This study evaluated selected properties of a prototype root repair cement containing surface pre-reacted glass ionomer fillers (S-PRG) in comparison to mineral trioxide aggregate (MTA) and intermediate restorative material (IRM). Materials and methods The antibacterial effect of S-PRG, MTA, and IRM cements was tested against Porphyromonas gingivalis and Enterococcus faecalis after 1 and 3 days of aging of the cements. The set cements were immersed in distilled water for 4 h to 28 days, and ion-releasing ability was evaluated. Initial and final setting times of all cements were evaluated using Gilmore needles. The push-out bond strength between radicular dentin and all cements was tested at different levels of the roots. Results S-PRG and IRM cements, but not MTA cement, demonstrated significant antibacterial effect against P. gingivalis. All types of cements exhibited significant antibacterial effect against E. faecalis without being able to eliminate the bacterium. S-PRG cement provided continuous release of fluoride, strontium, boron, sodium, aluminum, and zinc throughout all tested time points. Both initial and final setting times were significantly shorter for S-PRG and IRM cements in comparison to MTA. The push-out bond strength was significantly lower for S-PRG cement in comparison to MTA and IRM at coronal and middle levels of the roots. Conclusions S-PRG cement demonstrated significant antibacterial effects against endodontic pathogens, multiple ion-releasing ability, relatively short setting time, and low bonding strength. Clinical relevance S-PRG cement can be used as a one-visit root repair material with promising antibacterial properties and ion-releasing capacity.