ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Al Hasan, MOHAMMAD"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Enumerating k-cliques in a large network using Apache Spark
    (2017) Dheekonda, Raja Sekhar Rao; Al Hasan, MOHAMMAD
    Network analysis is an important research task which explains the relationships among various entities in a given domain. Most of the existing approaches of network analysis compute global properties of a network, such as transitivity, diameter, and all-pair shortest paths. They also study various non-random properties of a network, such as graph densifi cation with shrinking diameter, small diameter, and scale-freeness. Such approaches enable us to understand real-life networks with global properties. However, the discovery of the local topological building blocks within a network is an important task, and examples include clique enumeration, graphlet counting, and motif counting. In this paper, my focus is to fi nd an efficient solution of k-clique enumeration problem. A clique is a small, connected, and complete induced subgraph over a large network. However, enumerating cliques using sequential technologies is very time-consuming. Another promising direction that is being adopted is a solution that runs on distributed clusters of machines using the Hadoop mapreduce framework. However, the solution suffers from a general limitation of the framework, as Hadoop's mapreduce performs substantial amounts of reading and writing to disk. Thus, the running times of Hadoop-based approaches suffer enormously. To avoid these problems, we propose an e cient, scalable, and distributed solution, kc-spark , for enumerating cliques in real-life networks using the Apache Spark in-memory cluster computing framework. Experiment results show that kc-spark can enumerate k-cliques from very large real-life networks, whereas a single commodity machine cannot produce the same desired result in a feasible amount of time. We also compared kc-spark with Hadoop mapreduce solutions and found the algorithm to be 80-100 percent faster in terms of running times. On the other hand, we compared with the triangle enumeration with Hadoop mapreduce and results shown that kc-spark is 8-10 times faster than mapreduce implementation with the same cluster setup. Furthermore, the overall performance of kc-spark is improved by using Spark's inbuilt caching and broadcast transformations.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University