- Browse by Author
Browsing by Author "Akiyama, Nobuko"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Mitochondria–Nucleus Shuttling FK506-Binding Protein 51 Interacts with TRAF Proteins and Facilitates the RIG-I-Like Receptor-Mediated Expression of Type I IFN(Public Library of Science, 2014-05-01) Akiyama, Taishin; Shiraishi, Takuma; Qin, Junwen; Konno, Hiroyasu; Akiyama, Nobuko; Shinzawa, Miho; Miyauchi, Maki; Takizawa, Nobukazu; Yanai, Hiromi; Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko; Yanagawa, Hiroshi; Yong, Weidong; Shou, Weinian; Inoue, Jun-ichiro; Pediatrics, School of MedicineVirus-derived double-stranded RNAs (dsRNAs) are sensed in the cytosol by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs). These induce the expression of type I IFN and proinflammatory cytokines through signaling pathways mediated by the mitochondrial antiviral signaling (MAVS) protein. TNF receptor-associated factor (TRAF) family proteins are reported to facilitate the RLR-dependent expression of type I IFN by interacting with MAVS. However, the precise regulatory mechanisms remain unclear. Here, we show the role of FK506-binding protein 51 (FKBP51) in regulating the dsRNA-dependent expression of type I IFN. The binding of FKBP51 to TRAF6 was first identified by "in vitro virus" selection and was subsequently confirmed with a coimmunoprecipitation assay in HEK293T cells. The TRAF-C domain of TRAF6 is required for its interaction, although FKBP51 does not contain the consensus motif for interaction with the TRAF-C domain. Besides TRAF6, we found that FKBP51 also interacts with TRAF3. The depletion of FKBP51 reduced the expression of type I IFN induced by dsRNA transfection or Newcastle disease virus infection in murine fibroblasts. Consistent with this, the FKBP51 depletion attenuated dsRNA-mediated phosphorylations of IRF3 and JNK and nuclear translocation of RelA. Interestingly, dsRNA stimulation promoted the accumulation of FKBP51 in the mitochondria. Moreover, the overexpression of FKBP51 inhibited RLR-dependent transcriptional activation, suggesting a scaffolding function for FKBP51 in the MAVS-mediated signaling pathway. Overall, we have demonstrated that FKBP51 interacts with TRAF proteins and facilitates the expression of type I IFN induced by cytosolic dsRNA. These findings suggest a novel role for FKBP51 in the innate immune response to viral infection.