- Browse by Author
Browsing by Author "Ai, Tomohiko"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Abnormal Cardiac Repolarization After Seizure Episodes in Structural Brain Diseases: Cardiac Manifestation of Electrical Remodeling in the Brain?(American Heart Association, 2021-05-04) Mori, Shusuke; Hori, Atsushi; Turker, Isik; Inaji, Motoki; Bello-Pardo, Erika; Miida, Takashi; Otomo, Yasuhiro; Ai, Tomohiko; Medicine, School of MedicineBackground: Abnormal cardiac repolarization is observed in patients with epilepsy and can be associated with sudden death. We investigated whether structural brain abnormalities are correlated with abnormal cardiac repolarizations in patients with seizure or epilepsy. Methods and Results: We retrospectively analyzed and compared 12-lead ECG parameters following seizures between patients with and without structural brain abnormalities. A total of 96 patients were included: 33 women (17 with and 16 without brain abnormality) and 63 men (44 with and 19 without brain abnormality). Brain abnormalities included past stroke, chronic hematoma, remote bleeding, tumor, trauma, and postsurgical state. ECG parameters were comparable for heart rate, PR interval, and QRS duration between groups. In contrast, corrected QT intervals evaluated by Fridericia, Framingham, and Bazett formulas were prolonged in patients with brain abnormality compared with those without (women: Fridericia [normal versus abnormal], 397.4±32.7 versus 470.9±48.9; P=0.002; Framingham, 351.0±40.1 versus 406.2±46.1; P=0.002; Bazett, 423.8±38.3 versus 507.7±56.6; P<0.0001; men: Fridericia, 403.8±30.4 versus 471.0±47.1; P<0.0001; Framingham, 342.7±36.4 versus 409.4±45.8; P<0.0001; Bazett, 439.3±38.6 versus 506.2±56.8; P<0.0001). QT dispersion and Tpeak-Tend intervals were comparable between groups. We also observed abnormal ST-segment elevation in 5 patients. Importantly, no patients showed fatal arrhythmias during or after seizures. Conclusions: Our study demonstrated that brain abnormalities can be associated with abnormal cardiac repolarization after seizures, which might be a manifestation of electrophysiological remodeling in the brain.Item Arrhythmogenic Calmodulin Mutations Impede Activation of Small-conductance Calcium-Activated Potassium Current(Elsevier, 2016-08) Yu, Chih-Chieh; Ko, Jum-Suk; Ai, Tomohiko; Tsai, Wen-Chin; Chen, Zhenhui; Rubart, Michael; Vatta, Matteo; Everett, Thomas H.; George, Alfred L.; Chen, Peng-Sheng; Medicine, School of MedicineBackground Apamin sensitive small-conductance Ca2+-activated K+ (SK) channels are gated by intracellular Ca2+ through a constitutive interaction with calmodulin. Objective We hypothesize that arrhythmogenic human calmodulin mutations impede activation of SK channels. Methods We studied 5 previously published calmodulin mutations (N54I, N98S, D96V, D130G and F90L). Plasmids encoding either wild type (WT) or mutant calmodulin were transiently transfected into human embryonic kidney (HEK) 293 cells that stably express SK2 channels (SK2 Cells). Whole-cell voltage-clamp recording was used to determine apamin-sensitive current (IKAS) densities. We also performed optical mapping studies in normal murine hearts to determine the effects of apamin in hearts with (N=7) or without (N=3) pretreatment with sea anemone toxin (ATX II). Results SK2 cells transfected with WT calmodulin exhibited IKAS density (in pA/pF) of 33.6 [31.4;36.5] (median and confidence interval 25%-75%), significantly higher than that observed for cells transfected with N54I (17.0 [14.0;27.7], p=0.016), F90L (22.6 [20.3;24.3], p=0.011), D96V (13.0 [10.9;15.8], p=0.003), N98S (13.7 [8.8;20.4], p=0.005) and D130G (17.6 [13.8;24.6], p=0.003). The reduction of SK2 current was not associated with a decrease in membrane protein expression or intracellular distribution of the channel protein. Apamin increased the ventricular APD80 (from 79.6 ms [63.4-93.3] to 121.8 ms [97.9-127.2], p=0.010) in hearts pre-treated with ATX-II but not in control hearts. Conclusion Human arrhythmogenic calmodulin mutations impede the activation of SK2 channels in HEK 293 cells.Item Atrial fibrillation and electrophysiology in transgenic mice with cardiac-restricted overexpression of FKBP12(American Physiological Society, 2019-02-01) Pan, Zhenwei; Ai, Tomohiko; Chang, Po-Cheng; Liu, Ying; Liu, Jijia; Maruyama, Mitsunori; Homsi, Mohamed; Fishbein, Michael C.; Rubart, Michael; Lin, Shien-Fong; Xiao, Deyong; Chen, Hanying; Chen, Peng-Sheng; Shou, Weinian; Li, Bai-Yan; Medicine, School of MedicineCardiomyocyte-restricted overexpression of FK506-binding protein 12 transgenic (αMyHC-FKBP12) mice develop spontaneous atrial fibrillation (AF). The aim of the present study is to explore the mechanisms underlying the occurrence of AF in αMyHC-FKBP12 mice. Spontaneous AF was documented by telemetry in vivo and Langendorff-perfused hearts of αMyHC-FKBP12 and littermate control mice in vitro. Atrial conduction velocity was evaluated by optical mapping. The patch-clamp technique was applied to determine the potentially altered electrophysiology in atrial myocytes. Channel protein expression levels were evaluated by Western blot analyses. Spontaneous AF was recorded in four of seven αMyHC-FKBP12 mice but in none of eight nontransgenic (NTG) controls. Atrial conduction velocity was significantly reduced in αMyHC-FKBP12 hearts compared with NTG hearts. Interestingly, the mean action potential duration at 50% but not 90% was significantly prolonged in αMyHC-FKBP12 atrial myocytes compared with their NTG counterparts. Consistent with decreased conduction velocity, average peak Na+ current ( INa) density was dramatically reduced and the INa inactivation curve was shifted by approximately +7 mV in αMyHC-FKBP12 atrial myocytes, whereas the activation and recovery curves were unaltered. The Nav1.5 expression level was significantly reduced in αMyHC-FKBP12 atria. Furthermore, we found increases in atrial Cav1.2 protein levels and peak L-type Ca2+ current density and increased levels of fibrosis in αMyHC-FKBP12 atria. In summary, cardiomyocyte-restricted overexpression of FKBP12 reduces the atrial Nav1.5 expression level and mean peak INa, which is associated with increased peak L-type Ca2+ current and interstitial fibrosis in atria. The combined electrophysiological and structural changes facilitated the development of local conduction block and altered action potential duration and spontaneous AF. NEW & NOTEWORTHY This study addresses a long-standing riddle regarding the role of FK506-binding protein 12 in cardiac physiology. The work provides further evidence that FK506-binding protein 12 is a critical component for regulating voltage-gated sodium current and in so doing has an important role in arrhythmogenic physiology, such as atrial fibrillation.Item Carvedilol suppresses ryanodine receptor-dependent Ca2+ bursts in human neurons bearing PSEN1 variants found in early onset Alzheimer's disease(Public Library of Science, 2024-08-22) Hori, Atsushi; Inaba, Haruka; Hato, Takashi; Tanaka, Kimie; Sato, Shoichi; Okamoto, Mizuho; Horiuchi, Yuna; Paran, Faith Jessica; Tabe, Yoko; Mori, Shusuke; Rosales, Corina; Akamatsu, Wado; Murayama, Takashi; Kurebayashi, Nagomi; Sakurai, Takashi; Ai, Tomohiko; Miida, Takashi; Medicine, School of MedicineSeizures are increasingly being recognized as the hallmark of Alzheimer's disease (AD). Neuronal hyperactivity can be a consequence of neuronal damage caused by abnormal amyloid β (Aß) depositions. However, it can also be a cell-autonomous phenomenon causing AD by Aß-independent mechanisms. Various studies using animal models have shown that Ca2+ is released from the endoplasmic reticulum (ER) via type 1 inositol triphosphate receptors (InsP3R1s) and ryanodine receptors (RyRs). To investigate which is the main pathophysiological mechanism in human neurons, we measured Ca2+ signaling in neural cells derived from three early-onset AD patients harboring Presenilin-1 variants (PSEN1 p.A246E, p.L286V, and p.M146L). Of these, it has been reported that PSEN1 p.A246E and p.L286V did not produce a significant amount of abnormal Aß. We found all PSEN1-mutant neurons, but not wild-type, caused abnormal Ca2+-bursts in a manner dependent on the calcium channel, Ryanodine Receptor 2 (RyR2). Indeed, carvedilol, an RyR2 inhibitor, and VK-II-86, an analog of carvedilol without the β-blocking effects, sufficiently eliminated the abnormal Ca2+ bursts. In contrast, Dantrolene, an inhibitor of RyR1 and RyR3, and Xestospongin c, an IP3R inhibitor, did not attenuate the Ca2+-bursts. The Western blotting showed that RyR2 expression was not affected by PSEN1 p.A246E, suggesting that the variant may activate the RyR2. The RNA-Seq data revealed that ER-stress responsive genes were increased, and mitochondrial Ca2+-transporter genes were decreased in PSEN1A246E cells compared to the WT neurons. Thus, we propose that aberrant Ca2+ signaling is a key link between human pathogenic PSEN1 variants and cell-intrinsic hyperactivity prior to deposition of abnormal Aß, offering prospects for the development of targeted prevention strategies for at-risk individuals.Item A Case of Fatal Stanford Type A Aortic Dissection Caused by a Traffic Accident with Low Energy Impact(Dove Press, 2020-10-14) Mori, Shusuke; Ai, Tomohiko; Morishita, Koji; Otomo, Yasuhiro; Medicine, School of MedicineA seemingly healthy 84-year-old female pedestrian was mildly bumped by a car, and she hit her left shoulder, flank, and lower legs when she fell down on a street. She was conscious and stable when transferred to an emergency room. She had no sign of any major injuries except minor lacerations on her legs. Repeated evaluations including chest X-ray, ECG, and focused assessment with sonography for trauma did not reveal any abnormal findings. While waiting for discharge, she started having mild chest discomfort. Unexpectedly, the third echocardiogram showed mild pericardial effusion, and a CT with contrast showed aortic dissection in the ascending aorta and infra-left subclavian aortic dissection. She was immediately transferred by a helicopter to a tertiary trauma center for emergent repair surgery. Considering the site of dissections, progression of existing intrinsic intimal tear triggered by energy impact was suspected. However, traumatic causes could not be excluded. Extra caution and diligence should be exercised when examining elderly patients in blunt trauma.Item Comparison of the clinical performance and usefulness of five SARS-CoV-2 antibody tests(PloS, 2021) Wakita, Mitsuru; Idei, Mayumi; Saito, Kaori; Horiuchi, Yuki; Yamatani, Kotoko; Ishikawa, Suzuka; Yamamoto, Takamasa; Igawa, Gene; Hinata, Masanobu; Kadota, Katsuhiko; Kurosawa, Taro; Takahashi, Sho; Saito, Takumi; Misawa, Shigeki; Akazawa, Chihiro; Naito, Toshio; Milda, Takashi; Takahashi, Kazuhisa; Ai, Tomohiko; Tabe, Yoko; Medicine, School of MedicineWe examined the usefulness of five COVID-19 antibody detection tests using 114 serum samples at various time points from 34 Japanese COVID-19 patients. We examined Elecsys Anti-SARS-CoV-2 from Roche, and four immunochromatography tests from Hangzhou Laihe Biotech, Artron Laboratories, Chil, and Nadal. In the first week after onset, Elecsys had 40% positivity in Group S (severe cases) but was negative in Group M (mild-moderate cases). The immunochromatography kits showed 40–60% and 0–8% positivity in Groups S and M, respectively. In the second week, Elecsys showed 75% and 50% positivity, and the immunochromatography tests showed 5–80% and 50–75% positivity in Groups S and M, respectively. After the third week, Elecsys showed 100% positivity in both groups. The immunochromatography kits showed 100% positivity in Group S. In Group M, positivity decreased to 50% for Chil and 75–89% for Artron and Lyher. Elecsys and immunochromatography kits had 91–100% specificity. Elecsys had comparable chronological change of cut-off index values in the two groups from the second week to the sixth week. The current SARS-CoV-2 antibody detection tests do not provide meaningful interpretation of severity and infection status. Its use might be limited to short-term epidemiological studies.Item Drug-induced Fatal Arrhythmias: Acquired long QT and Brugada Syndromes(Elsevier, 2017) Turker, Isik; Ai, Tomohiko; Itoh, Hideki; Horie, Minoru; Department of Medicine, IU School of MedicineSince the early 1990s, the concept of primary “inherited” arrhythmia syndromes or ion channelopathies has evolved rapidly as a result of revolutionary progresses made in molecular genetics. Alterations in genes coding for membrane proteins such as ion channels or their associated proteins responsible for the generation of cardiac action potentials (AP) have been shown to cause specific malfunctions which eventually lead to cardiac arrhythmias. These arrhythmic disorders include congenital long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, short QT syndrome, progressive cardiac conduction disease, etc. Among these, long QT and Brugada syndromes are the most extensively studied, and drugs cause a phenocopy of these two diseases. To date, more than 10 different genes have been reported to be responsible for each syndrome. More recently, it was recognized that long QT syndrome can be latent, even in the presence of an unequivocally pathogenic mutation (silent mutation carrier). Co-existence of other pathological conditions in these silent mutation carriers may trigger a malignant form of ventricular arrhythmia, the so called torsade de pointes (TdP) that is most commonly brought about by drugs. In analogy to the drug-induced long QT syndrome, Brugada type 1 ECG can also be induced or unmasked by a wide variety of drugs and pathological conditions; so physicians may encounter patients with a latent form of Brugada syndrome. Of particular note, Brugada syndrome is frequently associated with atrial fibrillation whose therapeutic agents such as Vaughan Williams class IC drugs can unmask the dormant and asymptomatic Brugada syndrome. This review describes two types of drug-induced arrhythmias: the long QT and Brugada syndromes.Item Hypokalemia Promotes Late Phase 3 Early Afterdepolarization and Recurrent Ventricular Fibrillation During Isoproterenol Infusion in Langendorff Perfused Rabbit Ventricles(Elsevier, 2014-04) Maruyama, Mitsunori; Ai, Tomohiko; Chua, Su-Kiat; Park, Hyung-Wook; Lee, Young-Soo; Shen, Mark J.; Chang, Po-Cheng; Lin, Shien-Fong; Chen, Peng-Sheng; Department of Medicine, IU School of MedicineBACKGROUND Hypokalemia and sympathetic activation are commonly associated with electrical storm (ES) in normal and diseased hearts. The mechanisms remain unclear. OBJECTIVE To test the hypothesis that late phase 3 early afterdepolarization (EAD) induced by IKATP activation underlies the mechanisms of ES during isoproterenol infusion and hypokalemia. METHODS Intracellular calcium (Cai) and membrane voltage were optically mapped in 32 Langendorff-perfused normal rabbit hearts. RESULTS Repeated episodes of electrically-induced VF at baseline did not result in spontaneous VF (SVF). During isoproterenol infusion, SVF occurred in 1 of 15 hearts (7%) studied in normal extracellular potassium ([K+]o) (4.5 mmol/L), 3 of 8 hearts (38%) in 2.0 mmol/L [K+]o, 9 of 10 hearts (90%) in 1.5 mmol/L [K+]o, and 7 of 7 hearts (100%) in 1.0 mmol/L [K+]o (P<0.001). Optical mapping showed isoproterenol and hypokalemia enhanced Cai transient duration (CaiTD) and heterogeneously shortened action potential duration (APD) after defibrillation, leading to late phase 3 EAD and SVF. IKATP blocker (glibenclamide, 5 μmol/L) reversed the post-defibrillation APD shortening and suppressed recurrent SVF in all hearts studied despite no evidence of ischemia. Nifedipine reliably prevented recurrent VF when given before, but not after, the development of VF. IKr blocker (E-4031) and small conductance calcium activated potassium channel blocker (apamin) failed to prevent recurrent SVF. CONCLUSION Beta-adrenergic stimulation and concomitant hypokalemia could cause non-ischemic activation of IKATP, heterogeneous APD shortening and prolongation of CaiTD to provoke late phase 3 EAD, triggered activity and recurrent SVF. IKATP inhibition may be useful in managing ES during resistant hypokalemia.Item Increased CaV1.2 late current by a CACNA1C p.R412M variant causes an atypical Timothy syndrome without syndactyly(Springer Nature, 2022-11-08) Ozawa, Junichi; Ohno, Seiko; Melgari, Dario; Fukuyama, Megumi; Toyoda, Futoshi; Makiyama, Takeru; Yoshinaga, Masao; Suzuki, Hiroshi; Saitoh, Akihiko; Ai, Tomohiko; Horie, Minoru; Medicine, School of MedicineTimothy syndrome (TS) is a rare pleiotropic disorder associated with long QT syndrome, syndactyly, dysmorphic features, and neurological symptoms. Several variants in exon 8 or 8a of CACNA1C, a gene encoding the α-subunit of voltage-gated Ca2+ channels (Cav1.2), are known to cause classical TS. We identified a p.R412M (exon 9) variant in an atypical TS case. The aim of this study was to examine the functional effects of CACNA1C p.R412M on CaV1.2 in comparison with those of p.G406R. The index patient was a 2-month-old female infant who suffered from a cardio-pulmonary arrest in association with prolonged QT intervals. She showed dysmorphic facial features and developmental delay, but not syndactyly. Interestingly, she also presented recurrent seizures from 4 months. Genetic tests identified a novel heterozygous CACNA1C variant, p.R412M. Using heterologous expression system with HEK-293 cells, analyses with whole-cell patch-clamp technique revealed that p.R412M caused late Ca2+ currents by significantly delaying CaV1.2 channel inactivation, consistent with the underlying mechanisms of classical TS. A novel CACNA1C variant, p.R412M, was found to be associated with atypical TS through the same mechanism as p.G406R, the variant responsible for classical TS.Item Inhibition of BCL2A1 by STAT5 inactivation overcomes resistance to targeted therapies of FLT3-ITD/D835 mutant AML(Elsevier, 2022) Yamatani, Kotoko; Ai, Tomohiko; Saito, Kaori; Suzuki, Koya; Hori, Atsushi; Kinjo, Sonoko; Ikeo, Kazuho; Ruvolo, Vivian; Zhang, Weiguo; Mak, Po Yee; Kaczkowski, Bogumil; Harada, Hironori; Katayama, Kazuhiro; Sugimoto, Yoshikazu; Myslinski, Jered; Hato, Takashi; Miida, Takashi; Konopleva, Marina; Hayashizaki, Yoshihide; Carter, Bing Z.; Tabe, Yoko; Andreeff, Michael; Medicine, School of MedicineTyrosine kinase inhibitors (TKIs) are established drugs in the therapy of FLT3-ITD mutated acute myeloid leukemia (AML). However, acquired mutations, such as D835 in the tyrosine kinase domain (FLT3-ITD/D835), can induce resistance to TKIs. A cap analysis gene expression (CAGE) technology revealed that the gene expression of BCL2A1 transcription start sites was increased in primary AML cells bearing FLT3-ITD/D835 compared to FLT3-ITD. Overexpression of BCL2A1 attenuated the sensitivity to quizartinib, a type II TKI, and venetoclax, a selective BCL2 inhibitor, in AML cell lines. However, a type I TKI, gilteritinib, inhibited the expression of BCL2A1 through inactivation of STAT5 and alleviated TKI resistance of FLT3-ITD/D835. The combination of gilteritinib and venetoclax showed synergistic effects in the FLT3-ITD/D835 positive AML cells. The promoter region of BCL2A1 contains a BRD4 binding site. Thus, the blockade of BRD4 with a BET inhibitor (CPI-0610) downregulated BCL2A1 in FLT3-mutated AML cells and extended profound suppression of FLT3-ITD/D835 mutant cells. Therefore, we propose that BCL2A1 has the potential to be a novel therapeutic target in treating FLT3-ITD/D835 mutated AML.