- Browse by Author
Browsing by Author "Agoro, Rafiou"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item Anemia and FGF23 elevation in CKD: Homeostatic Interactions and Emerging Therapeutics(Wolters Kluwer, 2022) Agoro, Rafiou; White, Kenneth E.; Medical and Molecular Genetics, School of MedicinePurpose of review: Chronic kidney disease (CKD) is a progressive disorder that is associated with development of elevated fibroblast growth factor 23 (FGF23) levels and anemia. Here, we review recent literature that extends our current knowledge on the interactions between FGF23 and anemia in CKD and the impact of anemia-targeting therapeutics on FGF23 elevation in CKD. Recent findings: The anemia of CKD is primarily driven by a lack of erythropoietin (EPO) and iron deficiency. In addition to EPO and iron replacement, novel drug classes to treat anemia have been approved or are in clinical development. A recent observational study provides supportive evidence for the hypothesis that FGF23 elevation in CKD mediates adverse effects of iron deficiency on the cardiovascular system in patients with CKD. Preclinical and clinical studies revealed that ferric citrate (FC), and hypoxia-induced factor-prolyl hydroxylase inhibitor (HIF-PHI) treatment may reduce elevated FGF23 levels in CKD, suggesting that correcting anemia in CKD could potentially lower FGF23 levels. However, as we describe, HIF-PHI have context-dependent effects. Moreover, whether a reduction in FGF23 will improve patient outcomes in patients with CKD remains to be determined. Summary: With the emergence of novel therapeutics to treat oxygen and iron utilization deficits in CKD, studies have investigated the impact of these new drugs on FGF23. Several of these drugs, including FC and HIF-PHIs, alleviate iron homeostasis alterations in CKD and are associated with FGF23 reduction. Herein, we review the relationships between oxygen/iron sensing and FGF23 in CKD, recent findings which link FGF23 with cardiac dysfunction, as well as future translational and clinical avenues.Item Erythropoietin and a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHDi) lowers FGF23 in a model of chronic kidney disease (CKD)(Wiley, 2020-03-31) Noonan, Megan L.; Clinkenbeard, Erica L.; Ni, Pu; Swallow, Elizabeth A.; Tippen, Samantha P.; Agoro, Rafiou; Allen, Matthew R.; White, Kenneth E.; Medical and Molecular Genetics, School of MedicineIron‐deficiency anemia is a potent stimulator of the phosphaturic hormone Fibroblast growth factor‐23 (FGF23). Anemia, elevated FGF23, and elevated serum phosphate are significant mortality risk factors for patients with chronic kidney disease (CKD). However, the contribution of anemia to overall circulating FGF23 levels in CKD is not understood. Our goal was to investigate the normalization of iron handling in a CKD model using the erythropoiesis stimulating agents (ESAs) Erythropoietin (EPO) and the hypoxia‐inducible factor prolyl hydroxylase inhibitor (HIF‐PHDi) FG‐4592, on the production of, and outcomes associated with, changes in bioactive, intact FGF23 (“iFGF23”). Our hypothesis was that rescuing the prevailing anemia in a model of CKD would reduce circulating FGF23. Wild‐type mice were fed an adenine‐containing diet to induce CKD, then injected with EPO or FG‐4592. The mice with CKD were anemic, and EPO improved red blood cell indices, whereas FG‐4592 increased serum EPO and bone marrow erythroferrone (Erfe), and decreased liver ferritin, bone morphogenic protein‐6 (Bmp‐6), and hepcidin mRNAs. In the mice with CKD, iFGF23 was markedly elevated in control mice but was attenuated by >70% after delivery of either ESA, with no changes in serum phosphate. ESA treatment also reduced renal fibrosis markers, as well as increased Cyp27b1 and reduced Cyp24a1 mRNA expression. Thus, improvement of iron utilization in a CKD model using EPO and a HIF‐PHDi significantly reduced iFGF23, demonstrating that anemia is a primary driver of FGF23, and that management of iron utilization in patients with CKD may translate to modifiable outcomes in mineral metabolism.Item The HIF-PHI BAY 85–3934 (Molidustat) Improves Anemia and Is Associated With Reduced Levels of Circulating FGF23 in a CKD Mouse Model(Wiley, 2021-06) Noonan, Megan L.; Ni, Pu; Agoro, Rafiou; Sacks, Spencer A.; Swallow, Elizabeth A.; Wheeler, Jonathan A.; Clinkenbeard, Erica L.; Capitano, Maegan L.; Prideaux, Matthew; Atkins, Gerald J.; Thompson, William R.; Allen, Matthew R.; Broxmeyer, Hal E.; White, Kenneth E.; Medical and Molecular Genetics, School of MedicineFibroblast growth factor-23 (FGF23) is a critical factor in chronic kidney disease (CKD), with elevated levels causing alterations in mineral metabolism and increased odds for mortality. Patients with CKD develop anemia as the kidneys progressively lose the ability to produce erythropoietin (EPO). Anemia is a potent driver of FGF23 secretion; therefore, a hypoxia-inducible factor prolyl hydroxylase inhibitor (HIF-PHI) currently in clinical trials to elevate endogenous EPO to resolve anemia was tested for effects on iron utilization and FGF23-related parameters in a CKD mouse model. Mice were fed either a casein control diet or an adenine-containing diet to induce CKD. The CKD mice had markedly elevated iFGF23 and blood urea nitrogen (BUN), hyperphosphatemia, and anemia. Cohorts of mice were then treated with a patient-equivalent dose of BAY 85-3934 (BAY; Molidustat), which elevated EPO and completely resolved aberrant complete blood counts (CBCs) in the CKD mice. iFGF23 was elevated in vehicle-treated CKD mice (120-fold), whereas circulating iFGF23 was significantly attenuated (>60%) in the BAY-treated CKD mice. The BAY-treated mice with CKD also had reduced BUN, but there was no effect on renal vitamin D metabolic enzyme expression. Consistent with increased EPO, bone marrow Erfe, Transferrin receptor (Tfrc), and EpoR mRNAs were increased in BAY-treated CKD mice, and in vitro hypoxic marrow cultures increased FGF23 with direct EPO treatment. Liver Bmp-6 and hepcidin expression were downregulated in all BAY-treated groups. Femur trabecular parameters and cortical porosity were not worsened with BAY administration. In vitro, differentiated osteocyte-like cells exposed to an iron chelator to simulate iron depletion/hypoxia increased FGF23; repletion with holo-transferrin completely suppressed FGF23 and normalized Tfrc1. Collectively, these results support that resolving anemia using a HIF-PHI during CKD was associated with lower BUN and reduced FGF23, potentially through direct restoration of iron utilization, thus providing modifiable outcomes beyond improving anemia for this patient population. © 2021 American Society for Bone and Mineral Research (ASBMR).Item Identification of a second Klotho interaction site in the C terminus of FGF23(Elsevier, 2021) Agrawal, Archita; Ni, Pu; Agoro, Rafiou; White, Kenneth E.; DiMarchi, Richard D.; Medical and Molecular Genetics, School of MedicineFGF23 interacts with a FGFR/KL-receptor complex to propagate cellular signaling, where its C-terminal C26 peptide is critical for engaging the co-receptor KL. We identify a distinct peptide sequence C28 residing in the FGF23 C terminus that regulates its interaction with KL. C28 can independently function as an FGF23 antagonist, and we report an optimized peptide antagonist of much enhanced potency. FGF23 can use either of the two C-terminal sites to exert biological effects, as shown by in vitro and in vivo studies. The loss of both KL-interaction sites inactivates the protein. We conclude that the C terminus of FGF23 is a bidentate ligand possessing two independent KL-interaction sites. The identification of this second KL-association site provides an additional perspective in the molecular basis of FGF23-receptor signaling and raises questions pertaining to its structural mechanism of action and the potential for biased biological signaling.Item In the COVID-19 era, let’s keep an eye on clinical trials in Africa(International Society of Global Health, 2020-07-28) Agoro, Rafiou; Medical and Molecular Genetics, School of MedicineDue to the high contagiousness of COVID-19 and the lack of an effective medicine, governments and companies are urging their teams to develop new vaccine and therapy with the noble mission to protect us from COVID-19 and preserve our economic achievements. However, under the current pandemic circumstances, we cannot exclude the possibilities that some scientists violate clinical trials rules and guidelines to accelerate new vaccine and medicine development. Low-income countries, notably Africans, could be preferred as a basis for experimentations on human subjects due to the lack of stringent policies in comparison to their high-income counterparts.Item Iron Supplementation Therapy, A Friend and Foe of Mycobacterial Infections?(MDPI, 2019-05-17) Agoro, Rafiou; Mura, Catherine; Medical and Molecular Genetics, School of MedicineIron is an essential element that is required for oxygen transfer, redox, and metabolic activities in mammals and bacteria. Mycobacteria, some of the most prevalent infectious agents in the world, require iron as growth factor. Mycobacterial-infected hosts set up a series of defense mechanisms, including systemic iron restriction and cellular iron distribution, whereas mycobacteria have developed sophisticated strategies to acquire iron from their hosts and to protect themselves from iron's harmful effects. Therefore, it is assumed that host iron and iron-binding proteins, and natural or synthetic chelators would be keys targets to inhibit mycobacterial proliferation and may have a therapeutic potential. Beyond this hypothesis, recent evidence indicates a host protective effect of iron against mycobacterial infections likely through promoting remodeled immune response. In this review, we discuss experimental procedures and clinical observations that highlight the role of the immune response against mycobacteria under various iron availability conditions. In addition, we discuss the clinical relevance of our knowledge regarding host susceptibility to mycobacteria in the context of iron availability and suggest future directions for research on the relationship between host iron and the immune response and the use of iron as a therapeutic agent.Item Osteocyte Egln1/Phd2 links oxygen sensing and biomineralization via FGF23(Springer Nature, 2023-01-18) Noonan, Megan L.; Ni, Pu; Solis, Emmanuel; Marambio, Yamil G.; Agoro, Rafiou; Chu, Xiaona; Wang, Yue; Gao, Hongyu; Xuei, Xiaoling; Clinkenbeard, Erica L.; Jiang, Guanglong; Liu, Sheng; Stegen, Steve; Carmeliet, Geert; Thompson, William R.; Liu, Yunlong; Wan, Jun; White, Kenneth E.; Medical and Molecular Genetics, School of MedicineOsteocytes act within a hypoxic environment to control key steps in bone formation. FGF23, a critical phosphate-regulating hormone, is stimulated by low oxygen/iron in acute and chronic diseases, however the molecular mechanisms directing this process remain unclear. Our goal was to identify the osteocyte factors responsible for FGF23 production driven by changes in oxygen/iron utilization. Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) which stabilize HIF transcription factors, increased Fgf23 in normal mice, as well as in osteocyte-like cells; in mice with conditional osteocyte Fgf23 deletion, circulating iFGF23 was suppressed. An inducible MSC cell line ('MPC2') underwent FG-4592 treatment and ATACseq/RNAseq, and demonstrated that differentiated osteocytes significantly increased HIF genomic accessibility versus progenitor cells. Integrative genomics also revealed increased prolyl hydroxylase Egln1 (Phd2) chromatin accessibility and expression, which was positively associated with osteocyte differentiation. In mice with chronic kidney disease (CKD), Phd1-3 enzymes were suppressed, consistent with FGF23 upregulation in this model. Conditional loss of Phd2 from osteocytes in vivo resulted in upregulated Fgf23, in line with our findings that the MPC2 cell line lacking Phd2 (CRISPR Phd2-KO cells) constitutively activated Fgf23 that was abolished by HIF1α blockade. In vitro, Phd2-KO cells lost iron-mediated suppression of Fgf23 and this activity was not compensated for by Phd1 or -3. In sum, osteocytes become adapted to oxygen/iron sensing during differentiation and are directly sensitive to bioavailable iron. Further, Phd2 is a critical mediator of osteocyte FGF23 production, thus our collective studies may provide new therapeutic targets for skeletal diseases involving disturbed oxygen/iron sensing.Item Osteocytic FGF23 and Its Kidney Function(Frontiers, 2020-08-28) Agoro, Rafiou; Ni, Pu; Noonan, Megan L.; White, Kenneth E.; Medical and Molecular Genetics, School of MedicineOsteocytes, which represent up to 95% of adult skeletal cells, are deeply embedded in bone. These cells exhibit important interactive abilities with other bone cells such as osteoblasts and osteoclasts to control skeletal formation and resorption. Beyond this local role, osteocytes can also influence the function of distant organs due to the presence of their sophisticated lacunocanalicular system, which connects osteocyte dendrites directly to the vasculature. Through these networks, osteocytes sense changes in circulating metabolites and respond by producing endocrine factors to control homeostasis. One critical function of osteocytes is to respond to increased blood phosphate and 1,25(OH)2 vitamin D (1,25D) by producing fibroblast growth factor-23 (FGF23). FGF23 acts on the kidneys through partner fibroblast growth factor receptors (FGFRs) and the co-receptor Klotho to promote phosphaturia via a downregulation of phosphate transporters, as well as the control of vitamin D metabolizing enzymes to reduce blood 1,25D. In the first part of this review, we will explore the signals involved in the positive and negative regulation of FGF23 in osteocytes. In the second portion, we will bridge bone responses with the review of current knowledge on FGF23 endocrine functions in the kidneys.Item Segregating the effects of ferric citrate-mediated iron utilization and FGF23 in a mouse model of CKD(Wiley, 2022) Liesen, Michael P.; Noonan, Megan L.; Ni, Pu; Agoro, Rafiou; Hum, Julia M.; Clinkenbeard, Erica L.; Damrath, John G.; Wallace, Joseph M.; Swallow, Elizabeth A.; Allen, Matthew R.; White, Kenneth E.; Medical and Molecular Genetics, School of MedicineFerric citrate (FC) is an approved therapy for chronic kidney disease (CKD) patients as a phosphate (Pi) binder for dialysis-dependent CKD, and for iron deficiency anemia (IDA) in non-dialysis CKD. Elevated Pi and IDA both lead to increased FGF23, however, the roles of iron and FGF23 during CKD remain unclear. To this end, iron and Pi metabolism were tested in a mouse model of CKD (0.2% adenine) ± 0.5% FC for 6 weeks, with and without osteocyte deletion of Fgf23 (flox-Fgf23/Dmp1-Cre). Intact FGF23 (iFGF23) increased in all CKD mice but was lower in Cre+ mice with or without FC, thus the Dmp1-Cre effectively reduced FGF23. Cre+ mice fed AD-only had higher serum Pi than Cre- pre- and post-diet, and the Cre+ mice had higher BUN regardless of FC treatment. Total serum iron was higher in all mice receiving FC, and liver Tfrc, Bmp6, and hepcidin mRNAs were increased regardless of genotype; liver IL-6 showed decreased mRNA in FC-fed mice. The renal 1,25-dihydroxyvitamin D (1,25D) anabolic enzyme Cyp27b1 had higher mRNA and the catabolic Cyp24a1 showed lower mRNA in FC-fed mice. Finally, mice with loss of FGF23 had higher bone cortical porosity, whereas Raman spectroscopy showed no changes in matrix mineral parameters. Thus, FC- and FGF23-dependent and -independent actions were identified in CKD; loss of FGF23 was associated with higher serum Pi and BUN, demonstrating that FGF23 was protective of mineral metabolism. In contrast, FC maintained serum iron and corrected inflammation mediators, potentially providing ancillary benefit.Item Single cell cortical bone transcriptomics define novel osteolineage gene sets altered in chronic kidney disease(Frontiers Media, 2023-01-26) Agoro, Rafiou; Nookaew, Intawat; Noonan, Megan L.; Megan L., Yamil G.; Liu, Sheng; Chang, Wennan; Gao, Hongyu; Hibbard, Lainey M.; Metzger, Corinne E.; Horan, Daniel; Thompson, William R.; Xuei, Xiaoling; Liu, Yunlong; Zhang, Chi; Robling, Alexander G.; Bonewald, Lynda F.; Wan, Jun; White, Kenneth E.; Medical and Molecular Genetics, School of MedicineIntroduction: Due to a lack of spatial-temporal resolution at the single cell level, the etiologies of the bone dysfunction caused by diseases such as normal aging, osteoporosis, and the metabolic bone disease associated with chronic kidney disease (CKD) remain largely unknown. Methods: To this end, flow cytometry and scRNAseq were performed on long bone cells from Sost-cre/Ai9+ mice, and pure osteolineage transcriptomes were identified, including novel osteocyte-specific gene sets. Results: Clustering analysis isolated osteoblast precursors that expressed Tnc, Mmp13, and Spp1, and a mature osteoblast population defined by Smpd3, Col1a1, and Col11a1. Osteocytes were demarcated by Cd109, Ptprz1, Ramp1, Bambi, Adamts14, Spns2, Bmp2, WasI, and Phex. We validated our in vivo scRNAseq using integrative in vitro promoter occupancy via ATACseq coupled with transcriptomic analyses of a conditional, temporally differentiated MSC cell line. Further, trajectory analyses predicted osteoblast-to-osteocyte transitions via defined pathways associated with a distinct metabolic shift as determined by single-cell flux estimation analysis (scFEA). Using the adenine mouse model of CKD, at a time point prior to major skeletal alterations, we found that gene expression within all stages of the osteolineage was disturbed. Conclusion: In sum, distinct populations of osteoblasts/osteocytes were defined at the single cell level. Using this roadmap of gene assembly, we demonstrated unrealized molecular defects across multiple bone cell populations in a mouse model of CKD, and our collective results suggest a potentially earlier and more broad bone pathology in this disease than previously recognized.