- Browse by Author
Browsing by Author "Aggarwal, Amit"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Aurora A–Selective Inhibitor LY3295668 Leads to Dominant Mitotic Arrest, Apoptosis in Cancer Cells, and Shows Potent Preclinical Antitumor Efficacy(AACR, 2019-12) Du, Jian; Yan, Lei; Torres, Raquel; Gong, Xueqian; Bian, Huimin; Marugán, Carlos; Boehnke, Karsten; Baquero, Carmen; Hui, Yu-Hua; Chapman, Sonya C.; Yang, Yanzhu; Zeng, Yi; Bogner, Sarah M.; Foreman, Robert T.; Capen, Andrew; Donoho, Gregory P.; Van Horn, Robert D.; Barnard, Darlene S.; Dempsey, Jack A.; Beckmann, Richard P.; Marshall, Mark S.; Chio, Li-Chun; Qian, Yuewei; Webster, Yue W.; Aggarwal, Amit; Chu, Shaoyou; Bhattachar, Shobha; Stancato, Louis F.; Dowless, Michele S.; Iversen, Phillip W.; Manro, Jason R.; Walgren, Jennie L.; Halstead, Bartley W.; Dieter, Matthew Z.; Martinez, Ricardo; Bhagwat, Shripad V.; Kreklau, Emiko L.; Lallena, Maria Jose; Ye, Xiang S.; Patel, Bharvin K. R.; Reinhard, Christoph; Plowman, Gregory D.; Barda, David A.; Henry, James R.; Buchanan, Sean G.; Campbell, Robert M.; Pediatrics, School of MedicineAlthough Aurora A, B, and C kinases share high sequence similarity, especially within the kinase domain, they function distinctly in cell-cycle progression. Aurora A depletion primarily leads to mitotic spindle formation defects and consequently prometaphase arrest, whereas Aurora B/C inactivation primarily induces polyploidy from cytokinesis failure. Aurora B/C inactivation phenotypes are also epistatic to those of Aurora A, such that the concomitant inactivation of Aurora A and B, or all Aurora isoforms by nonisoform–selective Aurora inhibitors, demonstrates the Aurora B/C-dominant cytokinesis failure and polyploidy phenotypes. Several Aurora inhibitors are in clinical trials for T/B-cell lymphoma, multiple myeloma, leukemia, lung, and breast cancers. Here, we describe an Aurora A–selective inhibitor, LY3295668, which potently inhibits Aurora autophosphorylation and its kinase activity in vitro and in vivo, persistently arrests cancer cells in mitosis, and induces more profound apoptosis than Aurora B or Aurora A/B dual inhibitors without Aurora B inhibition–associated cytokinesis failure and aneuploidy. LY3295668 inhibits the growth of a broad panel of cancer cell lines, including small-cell lung and breast cancer cells. It demonstrates significant efficacy in small-cell lung cancer xenograft and patient-derived tumor preclinical models as a single agent and in combination with standard-of-care agents. LY3295668, as a highly Aurora A–selective inhibitor, may represent a preferred approach to the current pan-Aurora inhibitors as a cancer therapeutic agent.Item Combined CDK4/6 and ERK1/2 inhibition enhances anti-tumor activity in NF1-associated plexiform neurofibroma(American Association for Cancer Research, 2023) Flint, Alyssa C.; Mitchell, Dana K.; Angus, Steven P.; Smith, Abbi E.; Bessler, Waylan; Jiang, Li; Mang, Henry; Li, Xiaohong; Lu, Qingbo; Rodriguez, Brooke; Sandusky, George E.; Masters, Andi R.; Zhang, Chi; Dang, Pengtao; Koenig, Jenna; Johnson, Gary L.; Shen, Weihua; Liu, Jiangang; Aggarwal, Amit; Donoho, Gregory P.; Willard, Melinda D.; Bhagwat, Shripad V.; Clapp, D. Wade; Rhodes, Steven D.; Pediatrics, School of MedicinePurpose: Plexiform neurofibromas (PNF) are peripheral nerve sheath tumors that cause significant morbidity in persons with neurofibromatosis type 1 (NF1), yet treatment options remain limited. To identify novel therapeutic targets for PNF, we applied an integrated multi-omic approach to quantitatively profile kinome enrichment in a mouse model that has predicted therapeutic responses in clinical trials for NF1-associated PNF with high fidelity. Experimental design: Utilizing RNA sequencing combined with chemical proteomic profiling of the functionally enriched kinome using multiplexed inhibitor beads coupled with mass spectrometry, we identified molecular signatures predictive of response to CDK4/6 and RAS/MAPK pathway inhibition in PNF. Informed by these results, we evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, and the ERK1/2 inhibitor, LY3214996, alone and in combination in reducing PNF tumor burden in Nf1flox/flox;PostnCre mice. Results: Converging signatures of CDK4/6 and RAS/MAPK pathway activation were identified within the transcriptome and kinome that were conserved in both murine and human PNF. We observed robust additivity of the CDK4/6 inhibitor, abemaciclib, in combination with the ERK1/2 inhibitor, LY3214996, in murine and human NF1(Nf1) mutant Schwann cells. Consistent with these findings, the combination of abemaciclib (CDK4/6i) and LY3214996 (ERK1/2i) synergized to suppress molecular signatures of MAPK activation and exhibited enhanced antitumor activity in Nf1flox/flox;PostnCre mice in vivo. Conclusions: These findings provide rationale for the clinical translation of CDK4/6 inhibitors alone and in combination with therapies targeting the RAS/MAPK pathway for the treatment of PNF and other peripheral nerve sheath tumors in persons with NF1.