- Browse by Author
Browsing by Author "Adibuzzaman, Mohammad"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Big data in healthcare - the promises, challenges and opportunities from a research perspective: A case study with a model database(AMIA, 2018-04-16) Adibuzzaman, Mohammad; DeLaurentis, Poching; Hill, Jennifer; Benneyworth, Brian D.; Pediatrics, School of MedicineRecent advances in data collection during routine health care in the form of Electronic Health Records (EHR), medical device data (e.g., infusion pump informatics, physiological monitoring data, and insurance claims data, among others, as well as biological and experimental data, have created tremendous opportunities for biological discoveries for clinical application. However, even with all the advancement in technologies and their promises for discoveries, very few research findings have been translated to clinical knowledge, or more importantly, to clinical practice. In this paper, we identify and present the initial work addressing the relevant challenges in three broad categories: data, accessibility, and translation. These issues are discussed in the context of a widely used detailed database from an intensive care unit, Medical Information Mart for Intensive Care (MIMIC III) database.Item Identification of predictive patient characteristics for assessing the probability of COVID-19 in-hospital mortality(Public Library of Science, 2024) Rajwa, Bartek; Naved, Md Mobasshir Arshed; Adibuzzaman, Mohammad; Grama, Ananth Y.; Khan, Babar A.; Dundar, M. Murat; Rochet, Jean-Christophe; Computer Science, Luddy School of Informatics, Computing, and EngineeringAs the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe cases and patient mortality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused by the harmful actions of inflammatory mediators. Patients with severe COVID-19 are often afflicted with neurologic symptoms, and individuals with pre-existing neurodegenerative disease have an increased risk of severe COVID-19. Although collectively, these observations point to a bidirectional relationship between severe COVID-19 and neurologic disorders, little is known about the underlying mechanisms. Here, we analyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical characteristics most predictive of mortality. Feature discovery was conducted by training a regularized logistic regression classifier that serves as a machine-learning model with an embedded feature selection capability. SHAP analysis using the trained classifier revealed that a small ensemble of readily observable clinical features, including characteristics associated with cognitive impairment, could predict in-hospital mortality with an accuracy greater than 0.85 (expressed as the area under the ROC curve of the classifier). These findings have important implications for the prioritization of clinical measures used to identify patients with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having an elevated risk of death.