- Browse by Author
Browsing by Author "Abouhashem, Ahmed Safwat"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Bacterial Pyocyanin Inducible KRT6A Accelerates Closure of Epithelial Defect Under Conditions of Mitochondrial Dysfunction(Elsevier, 2023) Ghatak, Subhadip; Hemann, Craig; Boslett, James; Singh, Kanhaiya; Sharma, Anu; El Masry, Mohamed S.; Abouhashem, Ahmed Safwat; Ghosh, Nandini; Mathew-Steiner, Shomita S.; Roy, Sashwati; Zweier, Jay L.; Sen, Chandan K.; Surgery, School of MedicineRepair of epithelial defect is complicated by infection and related metabolites. Pyocyanin is one such metabolite which is secreted during Pseudomonas aeruginosa infection. Keratinocyte migration is required for the closure of skin epithelial defects. The current work sought to understand pyocyanin-keratinocyte interaction and its significance in tissue repair. SILAC proteomics identified mitochondrial dysfunction as the top pathway responsive to pyocyanin exposure in human keratinocytes. Consistently, functional studies demonstrated mitochondrial stress, depletion of reducing equivalents, and ATP. Strikingly, despite all the above, pyocyanin markedly accelerated keratinocyte migration. Investigation of underlying mechanisms revealed a new function of KRT6A in keratinocytes. KRT6A was pyocyanin inducible and accelerated closure of epithelial defect. Acceleration of closure was associated with poor quality healing including compromised expression of apical junction proteins. This work recognizes KRT6A for its role of enhancing keratinocyte migration under conditions of threat posed by pyocyanin. Qualitatively deficient junctional proteins under conditions of defensive acceleration of keratinocyte migration explains why an infected wound close with deficient skin barrier function as previously reported.Item Identification of a physiologic vasculogenic fibroblast state to achieve tissue repair(Springer Nature, 2023-02-28) Pal, Durba; Ghatak, Subhadip; Singh, Kanhaiya; Abouhashem, Ahmed Safwat; Kumar, Manishekhar; El Masry, Mohamed S.; Mohanty, Sujit K.; Palakurti, Ravichand; Rustagi, Yashika; Tabasum, Saba; Khona, Dolly K.; Khanna, Savita; Kacar, Sedat; Srivastava, Rajneesh; Bhasme, Pramod; Verma, Sumit S.; Hernandez, Edward; Sharma, Anu; Reese, Diamond; Verma, Priyanka; Ghosh, Nandini; Gorain, Mahadeo; Wan, Jun; Liu, Sheng; Liu, Yunlong; Castro, Natalia Higuita; Gnyawali, Surya C.; Lawrence, William; Moore, Jordan; Perez, Daniel Gallego; Roy, Sashwati; Yoder, Mervin C.; Sen, Chandan K.; Surgery, School of MedicineTissue injury to skin diminishes miR-200b in dermal fibroblasts. Fibroblasts are widely reported to directly reprogram into endothelial-like cells and we hypothesized that miR-200b inhibition may cause such changes. We transfected human dermal fibroblasts with anti-miR-200b oligonucleotide, then using single cell RNA sequencing, identified emergence of a vasculogenic subset with a distinct fibroblast transcriptome and demonstrated blood vessel forming function in vivo. Anti-miR-200b delivery to murine injury sites likewise enhanced tissue perfusion, wound closure, and vasculogenic fibroblast contribution to perfused vessels in a FLI1 dependent manner. Vasculogenic fibroblast subset emergence was blunted in delayed healing wounds of diabetic animals but, topical tissue nanotransfection of a single anti-miR-200b oligonucleotide was sufficient to restore FLI1 expression, vasculogenic fibroblast emergence, tissue perfusion, and wound healing. Augmenting a physiologic tissue injury adaptive response mechanism that produces a vasculogenic fibroblast state change opens new avenues for therapeutic tissue vascularization of ischemic wounds.