- Browse by Author
Browsing by Author "Abecasis, Gonçalo R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Exome chip meta-analysis fine maps causal variants and elucidates the genetic architecture of rare coding variants in smoking and alcohol use(Elsevier, 2018) Brazel, David M.; Jiang, Yu; Hughey, Jordan M.; Turcot, Valérie; Zhan, Xiaowei; Gong, Jian; Batini, Chiara; Weissenkampen, J. Dylan; Liu, MengZhen; Barnes, Daniel R.; Bertelsen, Sarah; Chou, Yi-Ling; Erzurumluoglu, A. Mesut; Faul, Jessica D.; Haessler, Jeff; Hammerschlag, Anke R.; Hsu, Chris; Kapoor, Manav; Lai, Dongbing; Le, Nhung; de Leeuw, Christiaan A.; Loukola, Anu; Mangino, Massimo; Melbourne, Carl A.; Pistis, Giorgio; Qaiser, Beenish; Rohde, Rebecca; Shao, Yaming; Stringham, Heather; Wetherill, Leah; Zhao, Wei; Agrawal, Arpana; Bierut, Laura; Chen, Chu; Eaton, Charles B.; Goate, Alison; Haiman, Christopher; Heath, Andrew; Iacono, William G.; Martin, Nicholas G.; Polderman, Tinca J.; Reiner, Alex; Rice, John; Schlessinger, David; Scholte, H. Steven; Smith, Jennifer A.; Tardif, Jean-Claude; Tindle, Hilary A.; van der Leij, Andries R.; Boehnke, Michael; Chang-Claude, Jenny; Cucca, Francesco; David, Sean P.; Foroud, Tatiana; Howson, Joanna M. M.; Kardia, Sharon L. R.; Kooperberg, Charles; Laakso, Markku; Lettre, Guillaume; Madden, Pamela; McGue, Matt; North, Kari; Posthuma, Danielle; Spector, Timothy; Stram, Daniel; Tobin, Martin D.; Weir, David R.; Kaprio, Jaakko; Abecasis, Gonçalo R.; Liu, Dajiang J.; Vrieze, Scott; Medical and Molecular Genetics, School of MedicineBackground Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences, and contribute to disease risk. Methods We analyzed ∼250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss of function coding variants. We performed a novel fine mapping analysis to winnow the number of putative causal variants within associated loci. Results Meta-analytic sample sizes ranged from 152,348-433,216, depending on the phenotype. Rare coding variation explained 1.1-2.2% of phenotypic variance, reflecting 11%-18% of the total SNP heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between 3 and 10 variants for 65 loci. 20 loci contained rare coding variants in the 95% credible intervals. Conclusions Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine mapping GWAS loci identifies specific variants contributing to the biological etiology of substance use behavior.Item Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program(Springer Nature, 2021) Taliun, Daniel; Harris, Daniel N.; Kessler, Michael D.; Carlson, Jedidiah; Szpiech, Zachary A.; Torres, Raul; Gagliano Taliun, Sarah A.; Corvelo, André; Gogarten, Stephanie M.; Kang, Hyun Min; Pitsillides, Achilleas N.; LeFaive, Jonathon; Lee, Seung-Been; Tian, Xiaowen; Browning, Brian L.; Das, Sayantan; Emde, Anne-Katrin; Clarke, Wayne E.; Loesch, Douglas P.; Shetty, Amol C.; Blackwell, Thomas W.; Smith, Albert V.; Wong, Quenna; Liu, Xiaoming; Conomos, Matthew P.; Bobo, Dean M.; Aguet, François; Albert, Christine; Alonso, Alvaro; Ardlie, Kristin G.; Arking, Dan E.; Aslibekyan, Stella; Auer, Paul L.; Barnard, John; Barr, R. Graham; Barwick, Lucas; Becker, Lewis C.; Beer, Rebecca L.; Benjamin, Emelia J.; Bielak, Lawrence F.; Blangero, John; Boehnke, Michael; Bowden, Donald W.; Brody, Jennifer A.; Burchard, Esteban G.; Cade, Brian E.; Casella, James F.; Chalazan, Brandon; Chasman, Daniel I.; Chen, Yii-Der Ida; Cho, Michael H.; Choi, Seung Hoan; Chung, Mina K.; Clish, Clary B.; Correa, Adolfo; Curran, Joanne E.; Custer, Brian; Darbar, Dawood; Daya, Michelle; de Andrade, Mariza; DeMeo, Dawn L.; Dutcher, Susan K.; Ellinor, Patrick T.; Emery, Leslie S.; Eng, Celeste; Fatkin, Diane; Fingerlin, Tasha; Forer, Lukas; Fornage, Myriam; Franceschini, Nora; Fuchsberger, Christian; Fullerton, Stephanie M.; Germer, Soren; Gladwin, Mark T.; Gottlieb, Daniel J.; Guo, Xiuqing; Hall, Michael E.; He, Jiang; Heard-Costa, Nancy L.; Heckbert, Susan R.; Irvin, Marguerite R.; Johnsen, Jill M.; Johnson, Andrew D.; Kaplan, Robert; Kardia, Sharon L. R.; Kelly, Tanika; Kelly, Shannon; Kenny, Eimear E.; Kiel, Douglas P.; Klemmer, Robert; Konkle, Barbara A.; Kooperberg, Charles; Köttgen, Anna; Lange, Leslie A.; Lasky-Su, Jessica; Levy, Daniel; Lin, Xihong; Lin, Keng-Han; Liu, Chunyu; Loos, Ruth J. F.; Garman, Lori; Gerszten, Robert; Lubitz, Steven A.; Lunetta, Kathryn L.; Mak, Angel C. Y.; Manichaikul, Ani; Manning, Alisa K.; Mathias, Rasika A.; McManus, David D.; McGarvey, Stephen T.; Meigs, James B.; Meyers, Deborah A.; Mikulla, Julie L.; Minear, Mollie A.; Mitchell, Braxton D.; Mohanty, Sanghamitra; Montasser, May E.; Montgomery, Courtney; Morrison, Alanna C.; Murabito, Joanne M.; Natale, Andrea; Natarajan, Pradeep; Nelson, Sarah C.; North, Kari E.; O'Connell, Jeffrey R.; Palmer, Nicholette D.; Pankratz, Nathan; Peloso, Gina M.; Peyser, Patricia A.; Pleiness, Jacob; Post, Wendy S.; Psaty, Bruce M.; Rao, D. C.; Redline, Susan; Reiner, Alexander P.; Roden, Dan; Rotter, Jerome I.; Ruczinski, Ingo; Sarnowski, Chloé; Schoenherr, Sebastian; Schwartz, David A.; Seo, Jeong-Sun; Seshadri, Sudha; Sheehan, Vivien A.; Sheu, Wayne H.; Shoemaker, M. Benjamin; Smith, Nicholas L.; Smith, Jennifer A.; Sotoodehnia, Nona; Stilp, Adrienne M.; Tang, Weihong; Taylor, Kent D.; Telen, Marilyn; Thornton, Timothy A.; Tracy, Russell P.; Van Den Berg, David J.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Vrieze, Scott; Weeks, Daniel E.; Weir, Bruce S.; Weiss, Scott T.; Weng, Lu-Chen; Willer, Cristen J.; Zhang, Yingze; Zhao, Xutong; Arnett, Donna K.; Ashley-Koch, Allison E.; Barnes, Kathleen C.; Boerwinkle, Eric; Gabriel, Stacey; Gibbs, Richard; Rice, Kenneth M.; Rich, Stephen S.; Silverman, Edwin K.; Qasba, Pankaj; Gan, Weiniu; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Papanicolaou, George J.; Nickerson, Deborah A.; Browning, Sharon R.; Zody, Michael C.; Zöllner, Sebastian; Wilson, James G.; Cupples, L. Adrienne; Laurie, Cathy C.; Jaquish, Cashell E.; Hernandez, Ryan D.; O'Connor, Timothy D.; Abecasis, Gonçalo R.; Epidemiology, Richard M. Fairbanks School of Public HealthThe Trans-Omics for Precision Medicine (TOPMed) programme seeks to elucidate the genetic architecture and biology of heart, lung, blood and sleep disorders, with the ultimate goal of improving diagnosis, treatment and prevention of these diseases. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. Here we describe the TOPMed goals and design as well as the available resources and early insights obtained from the sequence data. The resources include a variant browser, a genotype imputation server, and genomic and phenotypic data that are available through dbGaP (Database of Genotypes and Phenotypes)1. In the first 53,831 TOPMed samples, we detected more than 400 million single-nucleotide and insertion or deletion variants after alignment with the reference genome. Additional previously undescribed variants were detected through assembly of unmapped reads and customized analysis in highly variable loci. Among the more than 400 million detected variants, 97% have frequencies of less than 1% and 46% are singletons that are present in only one individual (53% among unrelated individuals). These rare variants provide insights into mutational processes and recent human evolutionary history. The extensive catalogue of genetic variation in TOPMed studies provides unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. Furthermore, combining TOPMed haplotypes with modern imputation methods improves the power and reach of genome-wide association studies to include variants down to a frequency of approximately 0.01%.