- Browse by Author
Browsing by Author "Abdul-Sater, Zahi"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item FANCA safeguards interphase and mitosis during hematopoiesis in vivo(Elsevier, 2015-12) Abdul-Sater, Zahi; Cerabona, Donna; Potchanant, Elizabeth Sierra; Sun, Zejin; Enzor, Rikki; He, Ying; Robertson, Kent; Goebel, W. Scott; Nalepa, Grzegorz; Department of Pediatrics, IU School of MedicineThe Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in nonhematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA crosslinking and anti-mitotic chemotherapeutics in primary FANCA-/- cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers.Item Mitotic Errors Promote Genomic Instability and Leukemia in a Novel Mouse Model of Fanconi Anemia(Frontiers Media, 2021-11-05) Edwards, Donna M.; Mitchell, Dana K.; Abdul-Sater, Zahi; Chan, Ka-Kui; Sun, Zejin; Sheth, Aditya; He, Ying; Jiang, Li; Yuan, Jin; Sharma, Richa; Czader, Magdalena; Chin, Pei-Ju; Liu, Yie; de Cárcer, Guillermo; Nalepa, Grzegorz; Broxmeyer, Hal E.; Clapp, D. Wade; Potchanant, Elizabeth A. Sierra; Pediatrics, School of MedicineFanconi anemia (FA) is a disease of genomic instability and cancer. In addition to DNA damage repair, FA pathway proteins are now known to be critical for maintaining faithful chromosome segregation during mitosis. While impaired DNA damage repair has been studied extensively in FA-associated carcinogenesis in vivo, the oncogenic contribution of mitotic abnormalities secondary to FA pathway deficiency remains incompletely understood. To examine the role of mitotic dysregulation in FA pathway deficient malignancies, we genetically exacerbated the baseline mitotic defect in Fancc-/- mice by introducing heterozygosity of the key spindle assembly checkpoint regulator Mad2. Fancc-/-;Mad2+/- mice were viable, but died from acute myeloid leukemia (AML), thus recapitulating the high risk of myeloid malignancies in FA patients better than Fancc-/-mice. We utilized hematopoietic stem cell transplantation to propagate Fancc-/-; Mad2+/- AML in irradiated healthy mice to model FANCC-deficient AMLs arising in the non-FA population. Compared to cells from Fancc-/- mice, those from Fancc-/-;Mad2+/- mice demonstrated an increase in mitotic errors but equivalent DNA cross-linker hypersensitivity, indicating that the cancer phenotype of Fancc-/-;Mad2+/- mice results from error-prone cell division and not exacerbation of the DNA damage repair defect. We found that FANCC enhances targeting of endogenous MAD2 to prometaphase kinetochores, suggesting a mechanism for how FANCC-dependent regulation of the spindle assembly checkpoint prevents chromosome mis-segregation. Whole-exome sequencing revealed similarities between human FA-associated myelodysplastic syndrome (MDS)/AML and the AML that developed in Fancc-/-; Mad2+/- mice. Together, these data illuminate the role of mitotic dysregulation in FA-pathway deficient malignancies in vivo, show how FANCC adjusts the spindle assembly checkpoint rheostat by regulating MAD2 kinetochore targeting in cell cycle-dependent manner, and establish two new mouse models for preclinical studies of AML.Item Pathophysiological role of microRNA-29 in pancreatic cancer stroma(Office of the Vice Chancellor for Research, 2015-04-17) Kwon, Jason J.; Nabinger, Sarah C.; Alluri, Ravi K.; Vega, Zachary; Sahu, Smiti S.; Abdul-Sater, Zahi; Yu, Zhangsheng; Gore, A. Jesse; Nalepa, Grzegorz; Saxena, Romil; Korc, Murray; Kota, JanaiahBackground: Dense fibrotic stroma associated with pancreatic ductal adenocarcinoma (PDAC) has been a major obstacle for drug delivery to the tumor bed and may impede attempts to slow down PDAC progression and metastasis. However, current antistromal drugs have not improved tumor response to chemotherapy or patient survival. Thus, a better understanding of the molecular mechanisms associated with tumorstromal interactions is desperately needed to develop novel anti-stromal therapeutic approaches. MicroRNAs (miRNAs) are an abundant class of highly conserved, small non-coding RNAs that function as key regulators of eukaryotic gene expression and cellular homeostasis. miR-29 is known to play a paramount role in the fibrotic process of several organs by providing crucial functions downstream of pro-fibrotic signaling pathways such as TGF-β1 and regulates the expression of extracellular matrix (ECM) proteins, a major component in the PDAC stroma. Upregulation of TGF-β1 is associated with PDAC pathogenesis and is known to activate stromal cells. Furthermore, vascular endothelial growth factor (VEGF) that stimulates tumor angiogenesis is a predicted target of miR-29. We hypothesize that miR-29 may be misregulated in TGF-β1 activated PDAC stromal cells and lead to excessive accumulation of ECM proteins and VEGF. Kwon et al. 2015 Annual AACR Meeting Restored expression of miR-29 could be therapeutically beneficial to modulate tumorstromal interactions. Methods: Northern blot or qPCR techniques were used to assess miR-29 levels in vitro stromal cells, murine PDAC model, and PDAC patient biopsies, and stromal deposition/fibrosis was determined by Sirius red staining. In murine and human PDAC samples, stromal specific miR-29 expression was determined via in situ hybridization by co-staining pancreatic tissues with glial fibrillary acidic protein a marker for stromal cells and miR-29. miR-29 functional studies were conducted by transfection of stroma cells with synthetic miR-29 mimics and locked nucleic acid, a miR-29 inhibitor, and ECM protein/VEGF expression was analyzed by western blot analysis. The effect of miR-29 overexpression in stromal cells on cancer colony growth was evaluated by direct coculture of stromal cells ectopically expressing miR-29 with pancreatic cancer cells, and subsequently, cancer colony number and stromal accumulation was determined by crystal violet and sirius red stains respectively. Results: In both in vitro and in vivo models as well as PDAC patient biopsies, we observed loss of miR-29 is a common phenomenon of activated stromal cells, and is associated with a significant increase in ECM and VEGF accumulation. Restored expression of miR-29 in stromal cells reduced the deposition of matrix proteins, VEGF expression, and cancer colony formation in direct co-culture. Conclusion: These results provide insight into the mechanistic role of miR-29 in PDAC stroma and its potential use as an anti-stromal/angiogenic therapeutic agent.Item Pathophysiological role of microRNA-29 in pancreatic cancer stroma(Nature Publishing Group, 2015-06-22) Kwon, Jason J.; Nabinger, Sarah C.; Vega, Zachary; Snigdha Sahu, Smiti; Alluri, Ravi K.; Abdul-Sater, Zahi; Yu, Zhangsheng; Gore, Jesse; Nalepa, Grzegorz; Saxena, Romil; Korc, Murray; Kota, Janaiah; Department of Medical & Molecular Genetics, IU School of MedicineDense fibrotic stroma associated with pancreatic ductal adenocarcinoma (PDAC) is a major obstacle for drug delivery to the tumor bed and plays a crucial role in pancreatic cancer progression. Current, anti-stromal therapies have failed to improve tumor response to chemotherapy and patient survival. Furthermore, recent studies show that stroma impedes tumor progression, and its complete ablation accelerates PDAC progression. In an effort to understand the molecular mechanisms associated with tumor-stromal interactions, using in vitro and in vivo models and PDAC patient biopsies, we show that the loss of miR-29 is a common phenomenon of activated pancreatic stellate cells (PSCs)/fibroblasts, the major stromal cells responsible for fibrotic stromal reaction. Loss of miR-29 is correlated with a significant increase in extracellular matrix (ECM) deposition, a major component in PDAC stroma. Our in vitro miR-29 gain/loss-of-function studies document the role of miR-29 in PSC-mediated ECM stromal protein accumulation. Overexpression of miR-29 in activated stellate cells reduced stromal deposition, cancer cell viability, and cancer growth in co-culture. Furthermore, the loss of miR-29 in TGF-β1 activated PSCs is SMAD3 dependent. These results provide insights into the mechanistic role of miR-29 in PDAC stroma and its potential use as a therapeutic agent to target PDAC.