- Browse by Author
Browsing by Author "Abdallah, Mustafa"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Anomaly Detection and Inter-Sensor Transfer Learning on Smart Manufacturing Datasets(MDPI, 2023-01-02) Abdallah, Mustafa; Joung, Byung-Gun; Lee, Wo Jae; Mousoulis, Charilaos; Raghunathan, Nithin; Shakouri, Ali; Sutherland, John W.; Bagchi, Saurabh; Computer and Information Science, School of ScienceSmart manufacturing systems are considered the next generation of manufacturing applications. One important goal of the smart manufacturing system is to rapidly detect and anticipate failures to reduce maintenance cost and minimize machine downtime. This often boils down to detecting anomalies within the sensor data acquired from the system which has different characteristics with respect to the operating point of the environment or machines, such as, the RPM of the motor. In this paper, we analyze four datasets from sensors deployed in manufacturing testbeds. We detect the level of defect for each sensor data leveraging deep learning techniques. We also evaluate the performance of several traditional and ML-based forecasting models for predicting the time series of sensor data. We show that careful selection of training data by aggregating multiple predictive RPM values is beneficial. Then, considering the sparse data from one kind of sensor, we perform transfer learning from a high data rate sensor to perform defect type classification. We release our manufacturing database corpus (4 datasets) and codes for anomaly detection and defect type classification for the community to build on it. Taken together, we show that predictive failure classification can be achieved, paving the way for predictive maintenance.Item AutoForecast: Automatic Time-Series Forecasting Model S(National Science Foundation, 2022) Abdallah, Mustafa; Rossi, Ryan; Mahadik, Kanak; Kim, Sungchul; Zhao, Handong; Bagchi, Saurabh; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyIn this work, we develop techniques for fast automatic selection of the best forecasting model for a new unseen time-series dataset, without having to first train (or evaluate) all the models on the new time-series data to select the best one. In particular, we develop a forecasting meta-learning approach called AutoForecast that allows for the quick inference of the best time-series forecasting model for an unseen dataset. Our approach learns both forecasting models performances over time horizon of same dataset and task similarity across different datasets. The experiments demonstrate the effectiveness of the approach over state-of-the-art (SOTA) single and ensemble methods and several SOTA meta-learners (adapted to our problem) in terms of selecting better forecasting models (i.e., 2X gain) for unseen tasks for univariate and multivariate testbeds.Item Context-Aware Collaborative Intelligence With Spatio-Temporal In-Sensor-Analytics for Efficient Communication in a Large-Area IoT Testbed(IEEE, 2021) Chatterjee, Baibhab; Seo, Dong-Hyun; Chakraborty, Shramana; Avlani, Shitij; Jiang, Xiaofan; Zhang, Heng; Abdallah, Mustafa; Raghunathan, Nithin; Mousoulis, Charilaos; Shakouri, Ali; Bagchi, Saurabh; Peroulis, Dimitrios; Sen, Shreyas; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyDecades of continuous scaling has reduced the energy of unit computing to virtually zero, while energy-efficient communication has remained the primary bottleneck in achieving fully energy-autonomous Internet-of-Things (IoT) nodes. This article presents and analyzes the tradeoffs between the energies required for communication and computation in a wireless sensor network, deployed in a mesh architecture over a 2400-acre university campus, and is targeted toward multisensor measurement of temperature, humidity and water nitrate concentration for smart agriculture. Several scenarios involving in-sensor analytics (ISA), collaborative intelligence (CI), and context-aware switching (CAS) of the cluster head during CI has been considered. A real-time co-optimization algorithm has been developed for minimizing the energy consumption in the network, hence maximizing the overall battery lifetime. Measurement results show that the proposed ISA consumes ≈ 467× lower energy as compared to traditional Bluetooth low energy (BLE) communication, and ≈ 69500× lower energy as compared with long-range (LoRa) communication. When the ISA is implemented in conjunction with LoRa, the lifetime of the node increases from a mere 4.3 h to 66.6 days with a 230-mAh coin cell battery, while preserving >99% of the total information. The CI and CAS algorithms help in extending the worst case node lifetime by an additional 50%, thereby exhibiting an overall network lifetime of ≈ 104 days, which is >90% of the theoretical limits as posed by the leakage current present in the system, while effectively transferring information sampled every second. A Web-based monitoring system was developed to continuously archive the measured data, and for reporting real-time anomalies.Item Explainable AI Methods For Enhancing AI-Based Network Intrusion Detection Systems(2024-08) Arreche, Osvaldo Guilherme; King, Brian S.; Abdallah, Mustafa; El-Sharkawy, Mohamed A.In network security, the exponential growth of intrusions stimulates research toward developing advanced artificial intelligence (AI) techniques for intrusion detection systems (IDS). However, the reliance on AI for IDS presents challenges, including the performance variability of different AI models and the lack of explainability of their decisions, hindering the comprehension of outputs by human security analysts. Hence, this thesis proposes end-to-end explainable AI (XAI) frameworks tailored to enhance the understandability and performance of AI models in this context.The first chapter benchmarks seven black-box AI models across one real-world and two benchmark network intrusion datasets, laying the foundation for subsequent analyses. Subsequent chapters delve into feature selection methods, recognizing their crucial role in enhancing IDS performance by extracting the most significant features for identifying anomalies in network security. Leveraging XAI techniques, novel feature selection methods are proposed, showcasing superior performance compared to traditional approaches.Also, this thesis introduces an in-depth evaluation framework for black-box XAI-IDS, encompassing global and local scopes. Six evaluation metrics are analyzed, including descrip tive accuracy, sparsity, stability, efficiency, robustness, and completeness, providing insights into the limitations and strengths of current XAI methods.Finally, the thesis addresses the potential of ensemble learning techniques in improving AI-based network intrusion detection by proposing a two-level ensemble learning framework comprising base learners and ensemble methods trained on input datasets to generate evalua tion metrics and new datasets for subsequent analysis. Feature selection is integrated into both levels, leveraging XAI-based and Information Gain-based techniques.Holistically, this thesis offers a comprehensive approach to enhancing network intrusion detection through the synergy of AI, XAI, and ensemble learning techniques by providing open-source codes and insights into model performances. Therefore, it contributes to the security advancement of interpretable AI models for network security, empowering security analysts to make informed decisions in safeguarding networked systems.Item Morshed: Guiding Behavioral Decision-Makers towards Better Security Investment in Interdependent Systems(Association for Computing Machinery, 2021) Abdallah, Mustafa; Woods, Daniel; Naghizadeh, Parinaz; Khalil, Issa; Cason, Timothy; Sundaram, Shreyas; Bagchi, Saurabh; Engineering Technology, Purdue School of Engineering and TechnologyWe model the behavioral biases of human decision-making in securing interdependent systems and show that such behavioral decision-making leads to a suboptimal pattern of resource allocation compared to non-behavioral (rational) decision-making. We provide empirical evidence for the existence of such behavioral bias model through a controlled subject study with 145 participants. We then propose three learning techniques for enhancing decision-making in multi-round setups. We illustrate the benefits of our decision-making model through multiple interdependent real-world systems and quantify the level of gain compared to the case in which the defenders are behavioral. We also show the benefit of our learning techniques against different attack models. We identify the effects of different system parameters (e.g., the defenders' security budget availability and distribution, the degree of interdependency among defenders, and collaborative defense strategies) on the degree of suboptimality of security outcomes due to behavioral decision-making.Item On Evaluating Black-Box Explainable AI Methods for Enhancing Anomaly Detection in Autonomous Driving Systems(MDPI, 2024-05-29) Nazat, Sazid; Arreche, Osvaldo; Abdallah, Mustafa; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyThe recent advancements in autonomous driving come with the associated cybersecurity issue of compromising networks of autonomous vehicles (AVs), motivating the use of AI models for detecting anomalies on these networks. In this context, the usage of explainable AI (XAI) for explaining the behavior of these anomaly detection AI models is crucial. This work introduces a comprehensive framework to assess black-box XAI techniques for anomaly detection within AVs, facilitating the examination of both global and local XAI methods to elucidate the decisions made by XAI techniques that explain the behavior of AI models classifying anomalous AV behavior. By considering six evaluation metrics (descriptive accuracy, sparsity, stability, efficiency, robustness, and completeness), the framework evaluates two well-known black-box XAI techniques, SHAP and LIME, involving applying XAI techniques to identify primary features crucial for anomaly classification, followed by extensive experiments assessing SHAP and LIME across the six metrics using two prevalent autonomous driving datasets, VeReMi and Sensor. This study advances the deployment of black-box XAI methods for real-world anomaly detection in autonomous driving systems, contributing valuable insights into the strengths and limitations of current black-box XAI methods within this critical domain.Item The Effect of Behavioral Probability Weighting in a Simultaneous Multi-Target Attacker-Defender Game(IEE, 2021) Abdallah, Mustafa; Cason, Timothy; Bagchi, Saurabh; Sundaram, Shreyas; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyWe consider a security game in a setting consisting of two players (an attacker and a defender), each with a given budget to allocate towards attack and defense, respectively, of a set of nodes. Each node has a certain value to the attacker and the defender, along with a probability of being successfully compromised, which is a function of the investments in that node by both players. For such games, we characterize the optimal investment strategies by the players at the (unique) Nash Equilibrium. We then investigate the impacts of behavioral probability weighting on the investment strategies; such probability weighting, where humans overweight low probabilities and underweight high probabilities, has been identified by behavioral economists to be a common feature of human decision-making. We show via numerical experiments that behavioral decision-making by the defender causes the Nash Equilibrium investments in each node to change (where the defender overinvests in the high-value nodes and underinvests in the low-value nodes).