- Browse by Author
Browsing by Author "Özeş, Osman N."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer.(Nature, 2016-10-13) Özeş, Ali R.; Miller, David F.; Özeş, Osman N.; Fang, Fang; Liu, Yunlong; Matei, Daniela; Huang, Tim; Nephew, Kenneth P.; Department of Cellular and Integrative Physiology, IU School of MedicineThe transcription factor nuclear factor kappa B (NF-κB) and the long non-coding RNA (lncRNA) HOTAIR (HOX transcript antisense RNA) play diverse functional roles in cancer. In this study, we show that upregulation of HOTAIR induced platinum resistance in ovarian cancer, and increased HOTAIR levels were observed in recurrent platinum-resistant ovarian tumors vs. primary ovarian tumors. To investigate the role of HOTAIR during DNA damage induced by platinum, we monitored double-strand breaks and show that HOTAIR expression results in sustained activation of DNA damage response after platinum treatment. We demonstrate that ectopic expression of HOTAIR induces NF-κB activation during DNA damage response and MMP-9 and IL-6 expression, both key NF-κB target genes. We show that HOTAIR regulates activation of NF-κB by decreasing Iκ-Bα (NF-κB inhibitor) and establish that by inducing prolonged NF-κB activation and expression of NF-κB target genes during DNA damage, HOTAIR plays a critical role in cellular senescence and platinum sensitivity. Our findings suggest that aItem Protein kinase A-mediated phosphorylation regulates STAT3 activation and oncogenic EZH2 activity(Springer Nature, 2018-06) Özeş, Ali R.; Pulliam, Nick; Ertosun, Mustafa G.; Yilmaz, Özlem; Tang, Jessica; Çopuroğlu, Ece; Matei, Daniela; Özeş, Osman N.; Nephew, Kenneth P.; Cellular and Integrative Physiology, School of MedicinePolycomb Repressive Complex 2 (PRC2) member enhancer of zeste homologue 2 (EZH2) trimethylates histone H3 lysine 27 (H3K27me3), alters chromatin structure and contributes to epigenetic regulation of gene expression in normal and disease processes. Phosphorylation of EZH2 augmented EZH2 oncogenic activity in cancer but observations have been limited to serine 21 (S21) residue by protein kinase B. In addition, phosphorylation of the evolutionarily conserved T372 motif of EZH2 by p38 resulted in EZH2 interaction with Ying Yang 1 and promoted muscle stem cell differentiation. In the present study, we used epithelial ovarian cancer (OC) cells as a model to demonstrate that phosphorylation of EZH2 at T372 by protein kinase A (PKA) induced a dominant-negative EZH2 phenotype, inhibited OC cell proliferation and migration in vitro and decreased ovarian xenograft tumor growth in vivo. Phosphorylation of T372 by PKA enhanced the interaction between EZH2 and signal transducer and activator of transcription 3 (STAT3), and STAT3 binding to pT372-EZH2 reduced cellular levels of pSTAT3 and downregulated interleukin 6 receptor expression in OC. Furthermore, PKA-mediated pT372-EZH2 decreased ATP levels and altered mitochondrial gene expression, resulting in mitochondrial dysfunction and reduced OC cell growth. These findings demonstrate that PKA-mediated T372 phosphorylation reduces oncogenic EZH2 activity and reveal a novel role for pT372 in regulating EZH2 in OC and possibly other cancers.