- Browse by Author
School of Dentistry
Permanent URI for this community
Browse
Browsing School of Dentistry by Author "Abeysekera, Irushi"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass(Elsevier, 2019) Maupin, Kevin A.; Himes, Evan R.; Plett, Artur P.; Chua, Hui Lin; Singh, Pratibha; Ghosh, Joydeep; Mohamad, Safa F.; Abeysekera, Irushi; Fisher, Alexa; Sampson, Carol; Hong, Jung-Min; Childress, Paul; Alvarez, Marta; Srour, Edward F.; Bruzzaniti, Angela; Pelus, Louis M.; Orschell, Christie M.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineOsteoblast number and activity decreases with aging, contributing to the age-associated decline of bone mass, but the mechanisms underlying changes in osteoblast activity are not well understood. Here, we show that the age-associated bone loss critically depends on impairment of the ability of megakaryocytes (MKs) to support osteoblast proliferation. Co-culture of osteoblast precursors with young MKs is known to increase osteoblast proliferation and bone formation. However, co-culture of osteoblast precursors with aged MKs resulted in significantly fewer osteoblasts compared to co-culture with young MKs, and this was associated with the downregulation of transforming growth factor beta. In addition, the ability of MKs to increase bone mass was attenuated during aging as transplantation of GATA1low/low hematopoietic donor cells (which have elevated MKs/MK precursors) from young mice resulted in an increase in bone mass of recipient mice compared to transplantation of young wild-type donor cells, whereas transplantation of GATA1low/low donor cells from old mice failed to enhance bone mass in recipient mice compared to transplantation of old wild-type donor cells. These findings suggest that the preservation or restoration of the MK-mediated induction of osteoblast proliferation during aging may hold the potential to prevent age-associated bone loss and resulting fractures.Item Osteomacs interact with megakaryocytes and osteoblasts to regulate murine hematopoietic stem cell function(ASH, 2017-12) Mohamad, Safa F.; Xu, Linlin; Ghosh, Joydeep; Childress, Paul J.; Abeysekera, Irushi; Himes, Evan R.; Wu, Hao; Alvarez, Marta B.; Davis, Korbin M.; Aguilar-Perez, Alexandra; Hong, Jung Min; Bruzzaniti, Angela; Kacena, Melissa A.; Srour, Edward F.; Biomedical Sciences and Comprehensive Care, School of DentistryNetworking between hematopoietic stem cells (HSCs) and cells of the hematopoietic niche is critical for stem cell function and maintenance of the stem cell pool. We characterized calvariae-resident osteomacs (OMs) and their interaction with megakaryocytes to sustain HSC function and identified distinguishing properties between OMs and bone marrow (BM)–derived macrophages. OMs, identified as CD45+F4/80+ cells, were easily detectable (3%-5%) in neonatal calvarial cells. Coculture of neonatal calvarial cells with megakaryocytes for 7 days increased OM three- to sixfold, demonstrating that megakaryocytes regulate OM proliferation. OMs were required for the hematopoiesis-enhancing activity of osteoblasts, and this activity was augmented by megakaryocytes. Serial transplantation demonstrated that HSC repopulating potential was best maintained by in vitro cultures containing osteoblasts, OMs, and megakaryocytes. With or without megakaryocytes, BM-derived macrophages were unable to functionally substitute for neonatal calvarial cell–associated OMs. In addition, OMs differentiated into multinucleated, tartrate resistant acid phosphatase–positive osteoclasts capable of bone resorption. Nine-color flow cytometric analysis revealed that although BM-derived macrophages and OMs share many cell surface phenotypic similarities (CD45, F4/80, CD68, CD11b, Mac2, and Gr-1), only a subgroup of OMs coexpressed M-CSFR and CD166, thus providing a unique profile for OMs. CD169 was expressed by both OMs and BM-derived macrophages and therefore was not a distinguishing marker between these 2 cell types. These results demonstrate that OMs support HSC function and illustrate that megakaryocytes significantly augment the synergistic activity of osteoblasts and OMs. Furthermore, this report establishes for the first time that the crosstalk between OMs, osteoblasts, and megakaryocytes is a novel network supporting HSC function.