- Browse by Author
Engineering Technology Department Theses and Dissertations
Permanent URI for this collection
Information about the Purdue School of Engineering and Technology Graduate Degree Programs available at IUPUI can be found at: http://www.engr.iupui.edu/academics.shtml
Browse
Browsing Engineering Technology Department Theses and Dissertations by Author "Anwar, Sohel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Advances in Vehicular Aerodynamics(2024-05) Dave, Deepam; Dalir, Hamid; El-Mounayri, Hazim A.; Tovar, Andres; Anwar, SohelThis article-based research traces the evolution and advancements of vehicular aerodynamic concepts and emphasizes on the significance of vehicle aerodynamics for high-performance vehicles. The thesis further explores the scope of integrating advanced vehicle aerodynamic concepts into consumer vehicles. The thesis aims to point out the significant improvements achieved with the integration of active aerodynamic concepts in terms of both vehicle performance as well as efficiency figures for consumer vehicles. Additionally, exploring the scope for the development of these advanced active aerodynamic systems as third-party modifications is the secondary objective of the presented research. The thesis also highlights the development and integration of unique active aerodynamic systems featured in performance vehicles and analyzes the performance gains achieved using MATLAB program-based simulations supported by a graphical representation of analyzed output data. The study of Active aerodynamic systems for both performance/track-oriented and consumer vehicles remains the primary emphasis for the presented thesis.Item Electric Sports Car Preliminary Design (Performance Envelope)(2024-05) Alsyoof, Mohammad; Dalir, Hamid; Tovar, Andres; Anwar, SohelCar design is a complex task because of how highly integrated system of systems it is. Fine designed car models take years of design and optimization and are usually done by specialty teams who are dedicated to each sub-system. This thesis delves into designing a simplified electric race car from scratch with focus on the performance envelope of it. First, a 3D CAD model was done using SolidWorks. That section deals with spatial engineering and strategic placement of major car components for best performance. Having most of the parts in place gives a rough estimate of CoG (Center of Gravity) location, which is needed for vehicle dynamics analysis, which are discussed later in the report. The target for this project car is to have innovative aerodynamics features which might not have been used before because of bulky internal combustion engines restricting available space. One of them is an airfoil-like fascia which makes the center part of the car act as a one big wing. That is believed to give a significant reduction in drag loads on the car. The approach for aerodynamics design and analysis started with a model representing the car’s OML (Outer Mold line) which was simulated separately using Siemens StarCCM+. After understanding the car’s body aero behavior, a rear wing was added to provide extra rear downforce for better handling and stability. The rear wing design was explained in detail. Unfortunately, due to time restrictions as well as software access issues, the aerodynamic analysis of the full car with rear wing is left for future work. After having an estimate about aero loads acting on the car, vehicle dynamics analysis could start. The first subject studied in vehicle dynamics was front-view suspension geometry analysis. Taking the available packaging and geometry into consideration, a 2D model was done in SolidWorks to optimize camber gain. This analysis gave the motion ratio of the front and rear pushrod suspension system which was needed to analyze the performance of the one-eighth car model, ½ car pitch model, and ½ car roll model. These models gave insights into the decision-making process for spring and damping rates to reach a good balance between performance and comfort. This project acts as a hub for further development and studies related to car design.