- Browse by Author
Department of Biology
Permanent URI for this community
Browse
Browsing Department of Biology by Author "Abeysekera, Irushi"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Can Epigallocatechin gallate (EGCG) Treatment Rescue Hippocampal-Dependent Cognitive Function in a Down Syndrome Mouse Model?(Office of the Vice Chancellor for Research, 2016-04-08) East, Audrey; Stringer, Megan; Abeysekera, Irushi; Goodlett, Charles R.; Roper, Randall J.Down Syndrome (DS) is caused by the trisomy of human chromosome 21 (Hsa21). Trisomy 21 can cause various behavioral, cognitive, learning and memory deficits. Deficits in hippocampal structure and function have been identified in mouse models of DS and are implicated in cognitive and learning impairments. Mouse models have suggested that deficits in cognitive function are associated with overexpression of Dyrk1a, a gene on Hsa21 found in three copies of individuals with DS. Dyrk1a is a gene that is involved in brain development and function. Ts65Dn DS model mice exhibit trisomy for approximately half of the genes on Hsa21 including Dyrk1a and exhibit cognitive and learning impairments. We are using Ts65Dn mice to test the effects of Epigallocatechin gallate (EGCG), a Dyrk1a inhibitor, on Dyrk1a activity and cognitive function. We hypothesize that EGCG will reduce Dyrk1a activity in the hippocampus and improve hippocampal-dependent spatial learning and memory in the Morris water maze place learning task in Ts65Dn mice. The mice were given daily EGCG treatment (200 mg/kg per day) by means of oral gavage beginning on postnatal day 54 and continuing throughout water maze testing (postnatal days 67-74). Measures of spatial learning included latency and path length to find a submerged platform during acquisition trials (postnatal days 67-73). Memory for the previously learned location of the platform was assessed on a probe trial (postnatal day 74) in which the platform was removed and the amount of time spent swimming in the area of the tank previously containing the platform was measured. These measures allowed us to analyze the mice’s ability to learn and remember the position of the platform and to spatially orient themselves. Preliminary data indicates that EGCG treatment may not be an effective treatment for the spatial learning and memory deficits evident in this mouse model of DS.Item Differential effects of Epigallocatechin-3-gallate containing supplements on correcting skeletal defects in a Down syndrome mouse model(Wiley Blackwell (John Wiley & Sons), 2016-04) Abeysekera, Irushi; Thomas, Jared; Georgiadis, Taxiarchis M.; Berman, Alycia G.; Hammond, Max A.; Dria, Karl J.; Wallace, Joseph M.; Roper, Randall J.; Department of Biology, School of ScienceSCOPE: Down syndrome (DS), caused by trisomy of human chromosome 21 (Hsa21), is characterized by a spectrum of phenotypes including skeletal abnormalities. The Ts65Dn DS mouse model exhibits similar skeletal phenotypes as humans with DS. DYRK1A, a kinase encoded on Hsa21, has been linked to deficiencies in bone homeostasis in DS mice and individuals with DS. Treatment with Epigallocatechin-3-gallate (EGCG), a known inhibitor of Dyrk1a, improves some skeletal abnormalities associated with DS in mice. EGCG supplements are widely available but the effectiveness of different EGCG-containing supplements has not been well studied. METHODS AND RESULTS: Six commercially available supplements containing EGCG were analyzed, and two of these supplements were compared with pure EGCG for their impact on skeletal deficits in a DS mouse model. The results demonstrate differential effects of commercial supplements on correcting skeletal abnormalities in Ts65Dn mice. Different EGCG-containing supplements display differences in degradation, polyphenol content, and effects on trisomic bone. CONCLUSION: This work suggests that the dose of EGCG and composition of EGCG-containing supplements may be important in correcting skeletal deficits associated with DS. Careful analyses of these parameters may lead to a better understanding of how to improve skeletal and other deficits that impair individuals with DS.Item Differential effects of Epigallocatechin-3-gallate containing supplements on correcting skeletal defects in a Down syndrome mouse model(Wiley, 2016-04) Abeysekera, Irushi; Thomas, Jared; Georgiadis, Taxiarchis M.; Berman, Alycia G.; Hammond, Max A.; Dria, Karl J.; Wallace, Joseph M.; Roper, Randall J.; Biology, School of ScienceSCOPE: Down syndrome (DS), caused by trisomy of human chromosome 21 (Hsa21), is characterized by a spectrum of phenotypes including skeletal abnormalities. The Ts65Dn DS mouse model exhibits similar skeletal phenotypes as humans with DS. DYRK1A, a kinase encoded on Hsa21, has been linked to deficiencies in bone homeostasis in DS mice and individuals with DS. Treatment with Epigallocatechin-3-gallate (EGCG), a known inhibitor of Dyrk1a, improves some skeletal abnormalities associated with DS in mice. EGCG supplements are widely available but the effectiveness of different EGCG-containing supplements has not been well studied. METHODS AND RESULTS: Six commercially available supplements containing EGCG were analyzed, and two of these supplements were compared with pure EGCG for their impact on skeletal deficits in a DS mouse model. The results demonstrate differential effects of commercial supplements on correcting skeletal abnormalities in Ts65Dn mice. Different EGCG-containing supplements display differences in degradation, polyphenol content, and effects on trisomic bone. CONCLUSION: This work suggests that the dose of EGCG and composition of EGCG-containing supplements may be important in correcting skeletal deficits associated with DS. Careful analyses of these parameters may lead to a better understanding of how to improve skeletal and other deficits that impair individuals with DS.Item Effects of Epigallcatechin-3-gallate in Novel Object Recognition of Ts65Dn Down Syndrome Mice(Office of the Vice Chancellor for Research, 2015-04-17) Minhas, Saniya; Abeysekera, Irushi; Delgado, Fatima; Dhillon, Hardeep; Goodlett, Charles R.; Roper, Randall J.Down syndrome (DS) is one of the most common genetic disorders and has an incidence of 1/700 births; which can lead to many impairments, both physically and mentally. All individuals with DS have cognitive impairments which results in learning and memory deficits. To study these deficits, we use the Ts65Dn mouse model that carries trisomy of approximately 50% of the genes found on human chromosome 21. DYRK1A, a gene found in three copies in both humans with DS and Ts65Dn mice has been shown to have increased expression in the brains of humans with DS. DYRK1A protein is involved in a number of critical pathways including CNS development. Epigallcatechin-3-gallate (EGCG), the main polyphenolic compound found in green tea, inhibits DYRK1A. We hypothesize that EGCG treatment help improve cognitive deficits in trisomic mice. After treatment, the mice were subjected to behavioral tasks, including the Novel Object Recognition (NOR) test. Our results indicate that there was a significant difference that existed due to trisomy in Ts65Dn mice; but there was no significant effect of a low dose EGCG treatment. Further studies are examining the effects of the NOR task after a higher dose EGCG treatment.Item Effects of Increased Dosage EGCG Treatment on Cognitive Deficits in the Ts65Dn Down Syndrome Mouse Model(Office of the Vice Chancellor for Research, 2015-04-17) Dhillon, Hardeep; Abeysekera, Irushi; Stringer, Megan; Goodlett, Charles R.; Roper, Randall J.Down syndrome (DS), caused by trisomy of human chromosome 21 (Hsa21), is the leading genetic cause of cognitive impairment and results in a constellation of phenotypes. Although symptomatic and therapeutic treatments exist for some DS phenotypes, treatments generally do not address the genetic etiology. The Ts65Dn mouse model, which contains a triplication of approximately half the gene orthologs of Hsa21, exhibits hippocampal learning and memory deficits as well as cerebellar motor and spatial deficits similar to those present in individuals with DS. DYRK1A, one of the genes overexpressed in DS, has been identified as a potential cause of cognitive impairment; therefore normalization of DYRK1A activity may be a valid form of treatment. We have shown that Epigallocatechin-3-gallate (EGCG), a major polyphenol of green tea, can rescue skeletal deficits found in the Ts65Dn mouse model at a low dosage. When this same low dosage was used to rescue behavioral deficits, however, it was ineffective. We hypothesize that high dose EGCG treatment lasting throughout the behavioral testing period will rescue the cognitive deficits observed in Ts65Dn mice. Trisomic mice and euploid littermates were given EGCG or water (control) for 7 weeks while being tested sequentially on novel object recognition (NOR) and Morris water maze (MWM). Our current data set shows that Ts65Dn mice exhibit deficits in learning and memory; further data will be collected in order to identify the effect of EGCG. Data showing pure EGCG as being ineffective will suggest the importance adding a supplemental compound, while data showing pure EGCG as an effective form of treatment will strongly support use of EGCG in translational studies in individuals with Down syndrome.Item Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes(Elsevier, 2017-08) Stringer, Megan; Abeysekera, Irushi; Thomas, Jared; LaCombe, Jonathan; Stancombe, Kailey; Stewart, Robert J.; Dria, Karl J.; Wallace, Joseph M.; Goodlett, Charles R.; Roper, Randall J.; Department of Biology, School of ScienceDown syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~ 50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~ 10 mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~ 20 mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2–3 mg per day (~ 40–60 mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4 mg/mL] or a water control, with treatments yielding average daily intakes of ~ 50 mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)—which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking—and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis in the cerebellum. The lack of beneficial therapeutic behavioral effects and potentially detrimental skeletal effects of EGCG found in Ts65Dn mice emphasize the importance of identifying dosages of EGCG that reliably improve DS phenotypes and linking those effects to actions of EGCG (or EGCG-containing supplements) in specific targets in brain and bone.Item Extended Treatment with a High Dosage of EGCG to Rescue Appendicular Bone Abnormalities in a Down Syndrome Mouse Model(Office of the Vice Chancellor for Research, 2015-04-17) Singh, Prabhjot; Roper, Randall J.; Abeysekera, IrushiIndividuals with Down syndrome (DS) show significant abnormalities in cognitive abilities, muscle tone, and bone homeostasis. DS is caused by a triplication of the 21st human chromosome (Hsa21). Previous research conducted by our lab using mouse models indicates that three copies of Dyrk1a causes the appendicular skeletal deficits associated with DS. Ts65Dn mouse model carries 50% of the genes homologous to Hsa21, and exhibit excellent phenotypic model for the skeletal deficits seen in individuals with DS, such as low bone mineral density, altered bone structure, and decreased cortical bone. Epigallocatechin-3-gallate (EGCG) is a green tea polyphenol that inhibits Dyrk1a activity. In a previous study, we showed that a three-week, low dose (10mg/kg/day) treatment of EGCG rescued bone mineral density, and trabecular bone to that of euploid levels, but not cortical bone. We hypothesize that increasing the concentration and duration of the treatment will be sufficient enough to more fully restore bone abnormalities by rescuing femoral bone mineral density, bone volume, and improving overall bone strength. This project explores the effects of using a prolonged seven-week, high dosage (100mg/kg/day) treatment on specific bone phenotypes. Dual Energy X-ray absorptiometry (DXA), MicroCT, and mechanical testing will be used as our means of analysis of the treated and untreated bones.Item Low dose EGCG treatment beginning in adolescence does not improve cognitive impairment in a Down syndrome mouse model(Elsevier, 2015-11) Stringer, Megan; Abeysekera, Irushi; Dria, Karl J.; Roper, Randall J.; Goodlett, Charles R.; Biology, School of ScienceDown syndrome (DS) or Trisomy 21 causes intellectual disabilities in humans and the Ts65Dn DS mouse model is deficient in learning and memory tasks. DYRK1A is triplicated in DS and Ts65Dn mice. Ts65Dn mice were given up to ~ 20 mg/kg/day epigallocatechin-3-gallate (EGCG), a Dyrk1a inhibitor, or water beginning on postnatal day 24 and continuing for three or seven weeks, and were tested on a series of behavioral and learning tasks, including a novel balance beam test. Ts65Dn as compared to control mice exhibited higher locomotor activity, impaired novel object recognition, impaired balance beam and decreased spatial learning and memory. Neither EGCG treatment improved performance of the Ts65Dn mice on these tasks. Ts65Dn mice had a non-significant increase in Dyrk1a activity in the hippocampus and cerebellum. Given the translational value of the Ts65Dn mouse model, further studies will be needed to identify the EGCG doses (and mechanisms) that may improve cognitive function.Item Rescue of the abnormal skeletal phenotype in Ts65Dn Down syndrome mice using genetic and therapeutic modulation of trisomic Dyrk1a(Oxford, 2015) Blazek, Joshua D.; Abeysekera, Irushi; Li, Jiliang; Roper, Randall J.; Biology, School of ScienceTrisomy 21 causes skeletal alterations in individuals with Down syndrome (DS), but the causative trisomic gene and a therapeutic approach to rescue these abnormalities are unknown. Individuals with DS display skeletal alterations including reduced bone mineral density, modified bone structure and distinctive facial features. Due to peripheral skeletal anomalies and extended longevity, individuals with DS are increasingly more susceptible to bone fractures. Understanding the genetic and developmental origin of DS skeletal abnormalities would facilitate the development of therapies to rescue these and other deficiencies associated with DS. DYRK1A is found in three copies in individuals with DS and Ts65Dn DS mice and has been hypothesized to be involved in many Trisomy 21 phenotypes including skeletal abnormalities. Return of Dyrk1a copy number to normal levels in Ts65Dn mice rescued the appendicular bone abnormalities, suggesting that appropriate levels of DYRK1A expression are critical for the development and maintenance of the DS appendicular skeleton. Therapy using the DYRK1A inhibitor epigallocatechin-3-gallate improved Ts65Dn skeletal phenotypes. These outcomes suggest that the osteopenic phenotype associated with DS may be rescued postnatally by targeting trisomic Dyrk1a.