- Browse by Author
Anatomy, Cell Biology & Physiology Department Theses and Dissertations
Permanent URI for this collection
Browse
Browsing Anatomy, Cell Biology & Physiology Department Theses and Dissertations by Author "Allen, Matthew R."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Approaches to Improve the Structure and Function of the Skeleton in Chronic Kidney Disease(2022-03) Swallow, Elizabeth Anne; Allen, Matthew R.; McNulty, Margaret A.; Moe, Sharon M.; Wallace, Joseph M.Chronic kidney disease (CKD) currently affects ~37 million Americans and causes substantially increased risk of skeletal fracture and fracture-related mortality. Current methods to treat CKD-related bone loss remain alarmingly ineffective. Skeletal fragility in CKD is predominately driven by deteriorations in cortical bone, highlighted by significant cortical porosity development. It is hypothesized that cortical porosity is largely driven by chronically high levels of parathyroid hormone (PTH), which alters the balance of bone remodeling in favor of rampant osteoclast activity and bone resorption. Restricting cortical bone deterioration and the development of cortical pores is likely essential to improve CKD patients’ bone health and reduce their fracture risk. The goal of this series of studies was to answer the following key questions: (1) to what degree do bisphosphonates, an approved pharmacological agent used in metabolic bone disease, accumulate in the skeleton of animals with CKD; (2) can smaller and more frequent doses of bisphosphonates alter skeletal accumulation and improve cortical architecture and the mechanical integrity of bone; (3) can non-bisphosphonate pharmacological interventions more specifically affect cortical bone deterioration. Utilizing epi-fluorescence and two-photon microscopy, our results show that bisphosphonates accumulate more in rats with renal impairment and fractionating bisphosphonates lowered skeletal accumulation irrespective of disease state. Further, studies in both rat and mouse models of CKD demonstrated different bisphosphonate treatments alone do not recover declines in cortical microarchitecture or mechanical properties in CKD. These findings demonstrate that a single intervention is not sufficient in managing CKD-induced bone alterations. Utilizing individual pore tracking analysis, we demonstrated cortical pores can be modulated with therapeutic interventions and can infill, despite the presence of CKD. Potent suppression of PTH led to significant pore infilling while more subtle reductions in PTH, via a calcimimetic, had less striking effects on bone. Calcimimetics mitigated cortical microarchitecture deterioration and reduced the rate of cortical pore expansion. Overall, these findings highlight the importance of PTH management for treating cortical deterioration in CKD. Although bisphosphonates can be utilized in ways that reduce skeletal accumulation, they appear to need co-therapies to reduce skeletal fragility associated with CKD.Item Assessing and Modifying Bone Quality in Chronic Kidney Disease(2015) Newman, Christopher L.; Allen, Matthew R.Chronic kidney disease (CKD) results in an increased fracture risk, partially due to elevations in parathyroid hormone (PTH) that lead to substantial bone loss. On its own, bone loss does not explain bone fragility in CKD, suggesting that changes in skeletal tissue (bone quality) may also be present. Understanding the factors that lead to fracture in these patients will have a substantial impact on patient care and could lead to a better understanding of how to reduce their fracture risk. Due to their suppression of PTH, calcitriol and its analogues are the current standard of care for bone disease in CKD. Yet, surprisingly little is known of their effects on bone. Agents effective in treating osteoporosis are not recommended in advanced CKD due to the lack of data regarding their efficacy and safety in these patients. The goals of the current study were to determine (1) the impact of CKD on bone quality, (2) the ability of calcitriol to improve skeletal parameters, and (3) the efficacy of various pharmacological interventions (calcium, bisphosphonates, anti-sclerostin antibody, and raloxifene) on bone mass, quality, and mechanical properties in CKD bone disease. Using a slowly progressive rat model of CKD, renal and mineral metabolism, bone morphology, bone quality, and bone mechanics (at several length scales) were assessed. Primarily due to elevated PTH, mechanical testing and tissue-level assessments revealed compromised bone quantity (high cortical porosity and low trabecular volume) and quality (high collagen cross-linking and low matrix bound water). Despite clinically relevant reductions in PTH, calcitriol treatment had no positive impact on skeletal properties. Most agents were only effective when PTH levels were normal. Raloxifene, however, led to greater whole bone and material toughness (the ability of bone to tolerate existing damage) despite modest PTH suppression. While the examination of bone quality in CKD is still in its infancy, these results indicate that enhancing bone quality with raloxifene may be an effective means to compensate for bone loss in CKD.Item Bone Perfusion Alterations in Chronic Kidney Disease(2019-05) Aref, Mohammad W.; Allen, Matthew R.; Organ, Jason M.; Tune, Jonathan D.; Wallace, Joseph M.; Moe, Sharon M.Patients with chronic kidney disease (CKD) are at an alarming risk of fracture and cardiovascular disease-associated mortality. There is a critical need to better understand the underlying mechanism driving altered cardiovascular and skeletal homeostasis, as well as any connection between the two. CKD has been shown to have negative effects on many vascular properties including endorgan perfusion. Surprisingly, exploration of skeletal perfusion and vasculature has not been undertaken in CKD. Alterations in bone perfusion are linked to dysregulation of bone remodeling and mass in multiple conditions. An understanding of the detrimental impact of CKD on bone perfusion is a crucial step in understanding bone disease in these patients. The goal of this series of studies was to test the global hypothesis that skeletal perfusion is altered in CKD and that alterations can be modulated through treatments that affect metabolic dysfunction. These studies utilized a rat model of CKD to conduct metabolic assessments, bone perfusion measurements, bone imaging studies, and isolated vessel reactivity experiments. Our results showed that animals with CKD had higher levels of parathyroid hormone (PTH), leading to substantial bone resorption. Bone perfusion measurements showed CKD-induced elevations in cortical bone perfusion with levels progressing alongside CKD severity. Conversely we show that marrow perfusion was lower in advanced CKD. PTH suppression therapy in animals with CKD resulted in the normalization of cortical bone perfusion and cortical bone mass, but did not normalize marrow bone perfusion. These results show a clear association between bone deterioration and altered bone perfusion in CKD. While the relationship of altered bone perfusion and bone deterioration in CKD necessitates further work, these results indicate that determining the mechanisms of bone perfusion alterations and whether they are drivers, propagators, or consequences of skeletal deterioration in CKD could help untangle a key player in CKD-induced bone alterations.Item Contribution of rankl regulation to bone resorption induced by PTH receptor activation in osteocytes(2012-10-19) Ben-awadh, Abdullah Nasser; Bellido, Teresita M.; Plotkin, Lilian I.; Allen, Matthew R.PTH increases osteoclasts by upregulating RANKL in cells of the osteoblastic lineage, but the precise differentiation stage of the PTH target cell remains undefined. Recent findings demonstrate that PTH regulates gene expression in osteocytes and that these cells are an important source of RANKL. We therefore investigated whether direct regulation of the RANKL gene by PTH in osteocytes is required to stimulate osteoclastic bone resorption. To address this question, we examined bone resorption and RANKL expression in transgenic mice in which PTH receptor signaling is activated only in osteocytes (DMP1-caPTHR1) crossed with mice lacking the distal control region regulated by PTH in the RANKL gene (DCR -/-). Longitudinal analysis of circulating C-terminal telopeptide (CTX) in male mice showed elevated resorption in growing mice that progressively decreased to plateau at 3-5 month of age. Resorption was significantly higher (~100%) in DMP1-caPTHR1 mice and non-significantly lower (15-30%) in DCR -/-mice, versus wild type littermates (WT) across all ages. CTX in compound DMP1-caPTHR1; DCR -/-mice was similar to DMP1-caPTHR1 mice at 1 and 2 months of age, but by 3 months of age, was significantly lower compared to DMP1-caPTHR1 mice (50% higher than WT), and by 5 months, it was undistinguishable from WT mice. Micro-CT analysis revealed lower tissue material density in the distal femur of DMP1-caPTHR1 mice, indicative of high remodeling, and this effect was partially corrected in compound vi mice. The increased resorption exhibited by DMP1-caPTHR1 mice was accompanied by elevated RANKL mRNA in bone at 1 and 5 months of age. RANKL expression levels displayed similar patterns to CTX levels in DMP1-caPTHR1; DCR -/-compound mice at 1 and 5 month of age. The same pattern of expression was observed for M-CSF. We conclude that resorption induced by PTH receptor signaling requires direct regulation of the RANKL gene in osteocytes, but this dependence is age specific. Whereas DCR-independent mechanisms involving gp130 cytokines or vitamin D 3 might operate in the growing skeleton, DCR-dependent, cAMP/PKA/CREB-activated mechanisms mediate resorption induced by PTH receptor signaling in the adult skeleton.Item The individual and combined effects of exercise and collagenase on the rodent Achilles tendon(2013-10) Dirks, Rachel Candace; Warden, Stuart J.; Allen, Matthew R.; Fuchs, Robyn K.; Robling, Alexander G.Tendinopathy is a common degenerative pathology that is characterized by activity related pain, focal tendon tenderness, intratendinous imaging changes, and typically results in changes in the histological, mechanical, and molecular properties of the tendon. Tendinopathy is difficult to study in humans, which has contributed to limited knowledge of the pathology, and thus a lack of appropriate treatment options. However, most believe that the pathology is degenerative as a result of a combination of both extrinsic and intrinsic factors. In order to gain understanding of this pathology, animal models are required. Because each tendon is naturally exposed to different conditions, a universal model is not feasible; therefore, an appropriate animal model must be established for each tendon susceptible to degenerative changes. While acceptable models have been developed for several tendons, a reliable model for the Achilles tendon remains elusive. The purpose of this dissertation was to develop an animal model of Achilles tendinopathy by investigating the individual and combined effects of an intrinsic and extrinsic factor on the rodent Achilles tendon. Rats selectively bred for high capacity running and Sprague Dawley rats underwent uphill treadmill running (an extrinsic factor) to mechanically overload the Achilles tendon or served as cage controls. Collagenase (intrinsic factor) was injected into one Achilles tendon in each animal to intrinsically break down the tendon. There were no interactions between uphill running and collagenase injection, indicating that the influence of the two factors was independent. Uphill treadmill running alone failed to produce any pathological changes in the histological or mechanical characteristics of the Achilles tendon, but did modify molecular activity. Intratendinous collagenase injection had negative effects on the histological, mechanical, and molecular properties of the tendon. The results of this dissertation demonstrated that the combined introduction of uphill treadmill running and collagenase injection did not lead to degenerative changes consistent with human Achilles tendinopathy. Intratendiouns collagenase injection negatively influenced the tendon; however, these changes were generally transient and not influenced by mechanical overload. Future studies should consider combinations of other intrinsic and extrinsic factors in an effort to develop an animal model that replicates human Achilles tendinopathy.Item Interactions Between Aging and Chronic Kidney Disease on the Skeleton(2023-05) Tippen, Samantha P.; Allen, Matthew R.; White, Kenneth E.; Moe, Sharon M.; Wallace, Joseph M.In the US, 15% of adults have chronic kidney disease (CKD). While CKD occurs across all ages, the prevalence is highest in the aged, with ~40% of individuals over age 65 having some form of CKD. CKD and aging are each independently associated with higher fracture risk, and thus overlaying CKD in the aging population presents an additive fracture risk. Cortical porosity is a central tenet underlying skeletal fragility and occurs in CKD and aging. Previous research on cortical porosity has focused on preventing pore formation, while research on pore reversal (infilling) is lacking. Pore infilling is dependent on proper osteoblast function, and previous research has shown that infilling is possible in young mice. However, it is unclear whether infilling is possible in aging mice due to aging-associated osteoblast dysfunction. Therefore, we proposed that aging animals with CKD may require both suppression of CKD-induced elevations in parathyroid hormone (PTH) and anabolic therapy to infill cortical pores. Romosozumab, a humanized monoclonal sclerostin antibody, uses PTH-independent mechanisms to increase osteoblast activity, making it an attractive therapeutic for CKD. CKD was induced by feeding aging (78-week) male mice 0.2% adenine for six weeks followed by two weeks of maintenance on control diet for a total study duration of eight weeks of CKD; mice were then treated with calcium water, romosozumab, or the combination and their effectiveness in improving skeletal quantity and quality was evaluated. Romosozumab treatment was associated with higher trabecular bone volume, lower cortical porosity, and higher mechanical properties compared to control animals. Combination treatment also resulted in benefits to trabecular bone volume and mechanical properties. These results demonstrate that both romosozumab alone and when combined with PTH suppression can be effective at improving bone microarchitecture and mechanical properties in aged individuals with CKD who are at high risk of fracture.Item Molecular Mechanisms Underlying Osteocyte Apoptosis and the Associated Osteoclastogenesis in CX43-Deficiency and Aging(2019-06) Davis, Hannah Marie; Plotkin, Lillian I.; Bidwell, Joseph P.; Allen, Matthew R.; Bruzzaniti, AngelaOld age is associated with increased bone fragility and risk of fracture as a result of skeletal alterations, including low bone density and cortical thinning. Further, apoptotic osteocytes accumulate in old mice and humans. We have previously shown that mice lacking osteocytic connexin (Cx) 43 (Cx43ΔOt) exhibit a phenotype similar to that of the aging skeleton, with elevated osteocyte apoptosis and an associated increase in osteoclastogenesis. These findings suggest that osteocyte apoptosis results in the release of factors that recruit osteoclasts to bone surfaces close to areas that contain apoptotic osteocytes. However, the specific chemotactic signals, the events mediating their release, and the mechanisms of their action remain unknown. Consistent with this notion, we also found that HMGB1 released by Cx43-deficient (Cx43def) MLO-Y4 osteocytic cells enhances osteoclastogenesis in part by increasing osteocytic RANKL, which promotes osteoclastogenesis, and, at the same time, directly stimulating osteoclastogenesis. Further, expression of the pro-survival microRNA (miR), miR21, is low in Cx43def cells and bones from old female mice, and low miR21 levels increase osteocyte apoptosis. However, surprisingly, mice lacking miR21 (miR21ΔOt) have decreased osteoclast number and activity even under conditions of elevated osteocyte apoptosis; suggesting that osteocytic miR21 may mediate osteoclast precursor recruitment/survival induced by apoptotic osteocytes. However, whether HMGB1/miR21 are released by osteocytes, and if the HMGB1 receptors, receptor for advanced glycation end products (RAGE) and/or tolllike receptor (TLR4) are involved in osteoclast recruitment in Cx43ΔOt and old mice is unknown. The overall objectives of this series of studies were to elucidate the mechanisms