- Browse by Author
Department of Electrical and Computer Engineering
Permanent URI for this community
Browse
Browsing Department of Electrical and Computer Engineering by Author "Alibeik, Maryam"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Harmonic Analysis and Practical Implementation of a Two-Phase Microgrid System(IEEE, 2015-03) Alibeik, Maryam; dos Santos, Euzeli C., Jr.; Yang, Y.; Wang, X.; Blaabjerg, F.; Department of Electrical and Computer Engineering, School of Engineering and TechnologyThis paper analyzes the harmonic contents of a non-linear load connected to a two-phase microgrid system. Although having the same harmonic content as the single-phase power system when supplying a non-linear load under balanced conditions, the two-phase microgrid system presents the following advantages: 1) constant power through the power line at the balanced condition; 2) two voltages i.e., line-to-line and phase voltages, available by using a three wire system; 3) optimized voltage utilization compared to a three-phase system; and 4) a direct connection of both symmetrical two-phase and single-phase electrical machines. This paper presents an approach for analyzing the harmonics of a two-phase non-linear load in a balanced and unbalanced cases. The mathematical model for the symmetrical component of an unbalanced two-phase system has also been presented in this paper. Finally, a practical implementation of the two-phase system has been performed, where different types of loads are connected to the two-phase power line to test the voltage control performance.Item High-Torque Electric Machines: State of the Art and Comparison(MDPI, 2022-07-30) Alibeik, Maryam; dos Santos, Euzeli C.; Electrical and Computer Engineering, School of Engineering and TechnologyThe state of the art of high-torque electric motors has been reviewed in this paper. This paper presents a literature review of high-torque density electric machines based on their airgap classifications, which brings a unique consideration to new design ideas to increase torque density. Electric machines are classified into three main groups based on their airgap configuration, i.e., (1) machines with a constant airgap, (2) machines with a variable airgap, and (3) machines with an eccentric airgap. This paper also presents the modeling of a high-torque airgap-less electric motor based on the concept of eccentric airgap. The torque density of this motor has been compared to motors available in the literature review. Among electrical motors with no permanent-magnet, airgap-less electric motors take the lead in terms of torque density, which is almost five times greater than the next motor, “in-wheel for electric vehicle”.