- Browse by Author
Department of Electrical and Computer Engineering
Permanent URI for this community
Browse
Browsing Department of Electrical and Computer Engineering by Author "Abdallah, Mustafa"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item AutoForecast: Automatic Time-Series Forecasting Model S(National Science Foundation, 2022) Abdallah, Mustafa; Rossi, Ryan; Mahadik, Kanak; Kim, Sungchul; Zhao, Handong; Bagchi, Saurabh; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyIn this work, we develop techniques for fast automatic selection of the best forecasting model for a new unseen time-series dataset, without having to first train (or evaluate) all the models on the new time-series data to select the best one. In particular, we develop a forecasting meta-learning approach called AutoForecast that allows for the quick inference of the best time-series forecasting model for an unseen dataset. Our approach learns both forecasting models performances over time horizon of same dataset and task similarity across different datasets. The experiments demonstrate the effectiveness of the approach over state-of-the-art (SOTA) single and ensemble methods and several SOTA meta-learners (adapted to our problem) in terms of selecting better forecasting models (i.e., 2X gain) for unseen tasks for univariate and multivariate testbeds.Item On Evaluating Black-Box Explainable AI Methods for Enhancing Anomaly Detection in Autonomous Driving Systems(MDPI, 2024-05-29) Nazat, Sazid; Arreche, Osvaldo; Abdallah, Mustafa; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyThe recent advancements in autonomous driving come with the associated cybersecurity issue of compromising networks of autonomous vehicles (AVs), motivating the use of AI models for detecting anomalies on these networks. In this context, the usage of explainable AI (XAI) for explaining the behavior of these anomaly detection AI models is crucial. This work introduces a comprehensive framework to assess black-box XAI techniques for anomaly detection within AVs, facilitating the examination of both global and local XAI methods to elucidate the decisions made by XAI techniques that explain the behavior of AI models classifying anomalous AV behavior. By considering six evaluation metrics (descriptive accuracy, sparsity, stability, efficiency, robustness, and completeness), the framework evaluates two well-known black-box XAI techniques, SHAP and LIME, involving applying XAI techniques to identify primary features crucial for anomaly classification, followed by extensive experiments assessing SHAP and LIME across the six metrics using two prevalent autonomous driving datasets, VeReMi and Sensor. This study advances the deployment of black-box XAI methods for real-world anomaly detection in autonomous driving systems, contributing valuable insights into the strengths and limitations of current black-box XAI methods within this critical domain.Item The Effect of Behavioral Probability Weighting in a Simultaneous Multi-Target Attacker-Defender Game(IEE, 2021) Abdallah, Mustafa; Cason, Timothy; Bagchi, Saurabh; Sundaram, Shreyas; Electrical and Computer Engineering, Purdue School of Engineering and TechnologyWe consider a security game in a setting consisting of two players (an attacker and a defender), each with a given budget to allocate towards attack and defense, respectively, of a set of nodes. Each node has a certain value to the attacker and the defender, along with a probability of being successfully compromised, which is a function of the investments in that node by both players. For such games, we characterize the optimal investment strategies by the players at the (unique) Nash Equilibrium. We then investigate the impacts of behavioral probability weighting on the investment strategies; such probability weighting, where humans overweight low probabilities and underweight high probabilities, has been identified by behavioral economists to be a common feature of human decision-making. We show via numerical experiments that behavioral decision-making by the defender causes the Nash Equilibrium investments in each node to change (where the defender overinvests in the high-value nodes and underinvests in the low-value nodes).