- Browse by Author
Biochemistry & Molecular Biology Department Theses and Dissertations
Permanent URI for this collection
Browse
Browsing Biochemistry & Molecular Biology Department Theses and Dissertations by Author "Aleksandrova, Mariya Aleksandrova"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Impact of ALCAM (CD166) on homing of hematopoietic stem and progenitor cells(2012-12-18) Aleksandrova, Mariya Aleksandrova; Goebl, Mark G.; Srour, Edward F.; Hurley, Thomas D., 1961-The potential of hematopoietic stem cells (HSC) to home and to anchor within the bone marrow (BM) microenvironment controls the ability of transplanted HSCs to establish normal hematopoiesis. Activated Leukocyte Cell Adhesion Molecule (ALCAM; also identified as CD166), which participates in homophilic interactions, is expressed on a group of osteoblasts in the hematopoietic niche capable of sustaining functional HSC in vitro. Since we could also detect ALCAM expression on HSC, we suspect that ALCAM may play a role in anchoring primitive hematopoietic cells to ALCAM expressing components of the hematopoietic niche via dimerization. We investigated the role of ALCAM on the homing abilities of hematopoietic stem and progenitor cells (HSPC) by calculating recovery frequency of Sca-1+ALCAM+ cells in an in vivo murine bone marrow transplantation model. Our data supports the notion that ALCAM promotes improved homing potential of hematopoietic Sca-1+ cells. Recovery of BM-homed Sca-1+ cells from the endosteal region was 1.8-fold higher than that of total donor cells. However, a 3.0-fold higher number of Sca-1+ALCAM+ cells homed to the endosteal region compared to total donor cells. Similarly, homed Sca-1+ALCAM+ cells were recovered from the vascular region at 2.1-fold greater frequency than total homed donor cells from that region, compared to only a 1.3-fold increase in the recovery frequency of Sca-1+ cells. In vitro quantitation of clonogenic BM-homed hematopoietic progenitors corroborate the results from the homing assay. The frequency of in vitro clonogenic progenitors was significantly higher among endosteal-homed Sca-1+ALCAM+ cells compared to other fractions of donor cells. Collectively, these data demonstrate that engrafting HSC expressing ALCAM home more efficiently to the BM and within the BM microenvironment, these cells preferentially seed the endosteal niche.