- Browse by Author
Mathematical Sciences Department Theses and Dissertations
Permanent URI for this collection
For more information about the Mathematical Sciences graduate programs visit: www.science.iupui.edu http://www.science.iupui.edu
Browse
Browsing Mathematical Sciences Department Theses and Dissertations by Author "Arciero, Julia"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Modeling Temporal Patterns of Neural Synchronization: Synaptic Plasticity and Stochastic Mechanisms(2020-08) Zirkle, Joel; Rubchinsky, Leonid; Kuznetsov, Alexey; Arciero, Julia; Barber, JaredNeural synchrony in the brain at rest is usually variable and intermittent, thus intervals of predominantly synchronized activity are interrupted by intervals of desynchronized activity. Prior studies suggested that this temporal structure of the weakly synchronous activity might be functionally significant: many short desynchronizations may be functionally different from few long desynchronizations, even if the average synchrony level is the same. In this thesis, we use computational neuroscience methods to investigate the effects of (i) spike-timing dependent plasticity (STDP) and (ii) noise on the temporal patterns of synchronization in a simple model. The model is composed of two conductance-based neurons connected via excitatory unidirectional synapses. In (i) these excitatory synapses are made plastic, in (ii) two different types of noise implementation to model the stochasticity of membrane ion channels is considered. The plasticity results are taken from our recently published article, while the noise results are currently being compiled into a manuscript. The dynamics of this network is subjected to the time-series analysis methods used in prior experimental studies. We provide numerical evidence that both STDP and channel noise can alter the synchronized dynamics in the network in several ways. This depends on the time scale that plasticity acts on and the intensity of the noise. However, in general, the action of STDP and noise in the simple network considered here is to promote dynamics with short desynchronizations (i.e. dynamics reminiscent of that observed in experimental studies) over dynamics with longer desynchronizations.