- Browse by Author
Department of Computer Science
Permanent URI for this community
Browse
Browsing Department of Computer Science by Author "Adewole, Maruf"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item The Brain Tumor Segmentation (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI(ArXiv, 2023-06-01) Moawad, Ahmed W.; Janas, Anastasia; Baid, Ujjwal; Ramakrishnan, Divya; Jekel, Leon; Krantchev, Kiril; Moy, Harrison; Saluja, Rachit; Osenberg, Klara; Wilms, Klara; Kaur, Manpreet; Avesta, Arman; Cassinelli Pedersen, Gabriel; Maleki, Nazanin; Salimi, Mahdi; Merkaj, Sarah; von Reppert, Marc; Tillmans, Niklas; Lost, Jan; Bousabarah, Khaled; Holler, Wolfgang; Lin, MingDe; Westerhoff, Malte; Maresca, Ryan; Link, Katherine E.; Tahon, Nourel Hoda; Marcus, Daniel; Sotiras, Aristeidis; LaMontagne, Pamela; Chakrabarty, Strajit; Teytelboym, Oleg; Youssef, Ayda; Nada, Ayaman; Velichko, Yuri S.; Gennaro, Nicolo; Connectome Students; Group of Annotators; Cramer, Justin; Johnson, Derek R.; Kwan, Benjamin Y. M.; Petrovic, Boyan; Patro, Satya N.; Wu, Lei; So, Tiffany; Thompson, Gerry; Kam, Anthony; Guzman Perez-Carrillo, Gloria; Lall, Neil; Group of Approvers; Albrecht, Jake; Anazodo, Udunna; Lingaru, Marius George; Menze, Bjoern H.; Wiestler, Benedikt; Adewole, Maruf; Anwar, Syed Muhammad; Labella, Dominic; Li, Hongwei Bran; Iglesias, Juan Eugenio; Farahani, Keyvan; Eddy, James; Bergquist, Timothy; Chung, Verena; Shinohara, Russel Takeshi; Dako, Farouk; Wiggins, Walter; Reitman, Zachary; Wang, Chunhao; Liu, Xinyang; Jiang, Zhifan; Van Leemput, Koen; Piraud, Marie; Ezhov, Ivan; Johanson, Elaine; Meier, Zeke; Familiar, Ariana; Kazerooni, Anahita Fathi; Kofler, Florian; Calabrese, Evan; Aneja, Sanjay; Chiang, Veronica; Ikuta, Ichiro; Shafique, Umber; Memon, Fatima; Conte, Gian Marco; Bakas, Spyridon; Rudie, Jeffrey; Aboian, Mariam; Radiology and Imaging Sciences, School of MedicineClinical monitoring of metastatic disease to the brain can be a laborious and timeconsuming process, especially in cases involving multiple metastases when the assessment is performed manually. The Response Assessment in Neuro-Oncology Brain Metastases (RANO-BM) guideline, which utilizes the unidimensional longest diameter, is commonly used in clinical and research settings to evaluate response to therapy in patients with brain metastases. However, accurate volumetric assessment of the lesion and surrounding peri-lesional edema holds significant importance in clinical decision-making and can greatly enhance outcome prediction. The unique challenge in performing segmentations of brain metastases lies in their common occurrence as small lesions. Detection and segmentation of lesions that are smaller than 10 mm in size has not demonstrated high accuracy in prior publications. The brain metastases challenge sets itself apart from previously conducted MICCAI challenges on glioma segmentation due to the significant variability in lesion size. Unlike gliomas, which tend to be larger on presentation scans, brain metastases exhibit a wide range of sizes and tend to include small lesions. We hope that the BraTS-METS dataset and challenge will advance the field of automated brain metastasis detection and segmentation.