- Browse by Author
Informatics School Theses and Dissertations
Permanent URI for this collection
Please go to "Informatics Graduate Theses and PhD Dissertations" to submit dissertations and theses for the School of Informatics and Computing, at: http://hdl.handle.net/1805/303.
Browse
Browsing Informatics School Theses and Dissertations by Author "Al Hasan, Mohammad"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Complex Proteoform Identification Using Top-Down Mass Spectrometry(2018-12) Kou, Qiang; Wu, Huanmei; Liu, Xiaowen; Liu, Yunlong; Al Hasan, MohammadProteoforms are distinct protein molecule forms created by variations in genes, gene expression, and other biological processes. Many proteoforms contain multiple primary structural alterations, including amino acid substitutions, terminal truncations, and posttranslational modifications. These primary structural alterations play a crucial role in determining protein functions: proteoforms from the same protein with different alterations may exhibit different functional behaviors. Because top-down mass spectrometry directly analyzes intact proteoforms and provides complete sequence information of proteoforms, it has become the method of choice for the identification of complex proteoforms. Although instruments and experimental protocols for top-down mass spectrometry have been advancing rapidly in the past several years, many computational problems in this area remain unsolved, and the development of software tools for analyzing such data is still at its very early stage. In this dissertation, we propose several novel algorithms for challenging computational problems in proteoform identification by top-down mass spectrometry. First, we present two approximate spectrum-based protein sequence filtering algorithms that quickly find a small number of candidate proteins from a large proteome database for a query mass spectrum. Second, we describe mass graph-based alignment algorithms that efficiently identify proteoforms with variable post-translational modifications and/or terminal truncations. Third, we propose a Markov chain Monte Carlo method for estimating the statistical signi ficance of identified proteoform spectrum matches. They are the first efficient algorithms that take into account three types of alterations: variable post-translational modifications, unexpected alterations, and terminal truncations in proteoform identification. As a result, they are more sensitive and powerful than other existing methods that consider only one or two of the three types of alterations. All the proposed algorithms have been incorporated into TopMG, a complete software pipeline for complex proteoform identification. Experimental results showed that TopMG significantly increases the number of identifications than other existing methods in proteome-level top-down mass spectrometry studies. TopMG will facilitate the applications of top-down mass spectrometry in many areas, such as the identification and quantification of clinically relevant proteoforms and the discovery of new proteoform biomarkers.Item System biology modeling : the insights for computational drug discovery(2014) Huang, Hui; Chen, Jake; Wu, Huanmei; Al Hasan, Mohammad; Liu, Yunlong; Zhou, YaoqiTraditional treatment strategy development for diseases involves the identification of target proteins related to disease states, and the interference of these proteins with drug molecules. Computational drug discovery and virtual screening from thousands of chemical compounds have accelerated this process. The thesis presents a comprehensive framework of computational drug discovery using system biology approaches. The thesis mainly consists of two parts: disease biomarker identification and disease treatment discoveries. The first part of the thesis focuses on the research in biomarker identification for human diseases in the post-genomic era with an emphasis in system biology approaches such as using the protein interaction networks. There are two major types of biomarkers: Diagnostic Biomarker is expected to detect a given type of disease in an individual with both high sensitivity and specificity; Predictive Biomarker serves to predict drug response before treatment is started. Both are essential before we even start seeking any treatment for the patients. In this part, we first studied how the coverage of the disease genes, the protein interaction quality, and gene ranking strategies can affect the identification of disease genes. Second, we addressed the challenge of constructing a central database to collect the system level data such as protein interaction, pathway, etc. Finally, we built case studies for biomarker identification for using dabetes as a case study. The second part of the thesis mainly addresses how to find treatments after disease identification. It specifically focuses on computational drug repositioning due to its low lost, few translational issues and other benefits. First, we described how to implement literature mining approaches to build the disease-protein-drug connectivity map and demonstrated its superior performances compared to other existing applications. Second, we presented a valuable drug-protein directionality database which filled the research gap of lacking alternatives for the experimental CMAP in computational drug discovery field. We also extended the correlation based ranking algorithms by including the underlying topology among proteins. Finally, we demonstrated how to study drug repositioning beyond genomic level and from one dimension to two dimensions with clinical side effect as prediction features.