The impact of global environmental changes on an exotic invasive species, Alliaria petiolata (garlic mustard)

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2016
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
M.S.
Degree Year
2016
Department
Department of Biology
Grantor
Purdue University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Invasive exotic species have caused severe ecological and economic damages to many communities in the United States and elsewhere. It is therefore important to improve our understanding of how global environmental changes will affect the invasiveness and severity of these invasive species. Over the last century, anthropogenic activities have caused multiple environmental changes. Previous studies have generally focused on the impact of the increasing atmospheric CO2 level on the physiology and growth of invasive species. With atmospheric nitrogen (N) deposition on the rise over the past decades, it is essential to recognize how an increase in soil N will affect the invasiveness of some exotic species. To determine the impact of increased atmospheric N deposition and drought stress on invasive species, I studied the impact of different levels of N on Alliaria petiolata (garlic mustard), an exotic invasive species. In addition, I examined the interactive effects of N deposition and drought stress on garlic mustard. Multiple morphological measurements were used to analyze the growth rate at varying levels of N and soil moisture. The study on N deposition on plant growth will improve our understanding of the invasiveness of garlic mustard. The changes in precipitation patterns must also be examined to foresee if plants in increased atmospheric N conditions can overcome drought stress conditions. I found an increase in plant growth and photosynthetic rate at higher levels of N. Plants with adequate water displayed a continued increase from the lowest level to the highest level of N. Increases in drought stressed plants plateaued at an intermediate N level of 20 kg ha-1. My results demonstrated that during drought stress garlic mustard does not benefit from an increase in N above a certain level. These results are important to take into consideration when we analyze the spreading of invasive weeds due to global environmental changes, including increased atmospheric N deposition and regional drought, in order to apply the optimal management strategies for controlling invasive species.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Thesis
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}