Exploring the Importance of Accounting for Nonlinearity in Correlated Count Regression Systems from the Perspective of Causal Estimation and Inference

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021-07
Language
American English
Embargo Lift Date
Department
Committee Chair
Degree
Ph.D.
Degree Year
2021
Department
Grantor
Indiana University
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

The main motivation for nearly all empirical economic research is to provide scientific evidence that can be used to assess causal relationships of interest. Essential to such assessments is the rigorous specification and accurate estimation of parameters that characterize the causal relationship between a presumed causal variable of interest, whose value is to be set and altered in the context of a relevant counterfactual and a designated outcome of interest. Relationships of this type are typically characterized by an effect parameter (EP) and estimation of the EP is the objective of the empirical analysis. The present research focuses on cases in which the regression outcome of interest is a vector that has count-valued elements (i.e., the model under consideration comprises a multi-equation system of equations). This research examines the importance of account for nonlinearity and cross-equation correlations in correlated count regression systems from the perspective of causal estimation and inference. We evaluate the efficiency and accuracy gains of estimating bivariate count valued systems-of-equations models by comparing three pairs of models: (1) Zellner’s Seemingly Unrelated Regression (SUR) versus Count-Outcome SUR - Conway Maxwell Poisson (CMP); (2) CMP SUR versus Single-Equation CMP Approach; (3) CMP SUR versus Poisson SUR. We show via simulation studies that it is more efficient to estimate jointly than equation-by-equation, it is more efficient to account for nonlinearity. We also apply our model and estimation method to real-world health care utilization data, where the dependent variables are correlated counts: count of physician office-visits, and count of non-physician health professional office-visits. The presumed causal variable is private health insurance status. Our model results in a reduction of at least 30% in standard errors for key policy EP (e.g., Average Incremental Effect). Our results are enabled by our development of a Stata program for approximating two-dimensional integrals via Gauss-Legendre Quadrature.

Description
Indiana University-Purdue University Indianapolis (IUPUI)
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Dissertation
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}