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Abstract

Background—Transplantation of mesenchymal stromal cells (MSCs) may be a novel treatment 

for intestinal ischemia. The optimal stromal cell source that could yield maximal protection 

following injury, however, has not been identified. We hypothesized that: 1) MSCs would increase 

survival and mesenteric perfusion, preserve intestinal histological architecture, and limit 

inflammation following intestinal ischemia and reperfusion injury (I/R), and 2) MSCs harvested 

from different sources of tissue would have equivalent protective properties to the intestine 

following I/R.

Methods—Adult male mice were anesthetized and a midline laparotomy performed. The 

intestines were eviscerated, the small bowel mesenteric root identified, and baseline intestinal 

perfusion was determined using Laser Doppler Imaging (LDI). Intestinal ischemia was established 

by temporarily occluding the superior mesenteric artery for 60 minutes with a non-crushing clamp. 

Following ischemia, the clamp was removed and the intestines were allowed to recover. Prior to 

abdominal closure, 2 × 106 human umbilical (USCs), bone-marrow (BMSCs) derived MSCs, or 

keratinocytes in 250μl of phosphate-buffered saline (PBS) vehicle were injected into the 

peritoneum. Animals were allowed to recover for 12 or 24 hours (perfusion, histology, 

inflammatory studies), or 7 days (survival studies). Survival data was analyzed using log rank test. 

Perfusion was expressed as percentage of baseline and 12 and 24 hour data was analyzed using 
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one way ANOVA and student’s t-test. Non parametric data was compared using Mann-Whitney-U 

test. A p-value of less than 0.05 was significant.

Results—All MSCs increased seven day survival following I/R and were superior to vehicle or 

keratinocytes (P<0.05). All MSCs increased mesenteric perfusion above vehicle at 12 and 24 

hours following injury (P<0.05). All MSCs provided superior perfusion compared to keratinocytes 

at 24 hours post-injury (P<0.05). Administration of each MSC line improved intestinal histology 

after I/R (P<0.05). Multiple pro-inflammatory chemokines were down-regulated following 

application of MSCs suggesting a decreased inflammatory response following MSC therapy.

Conclusion—Transplantation of MSCs following intestinal I/R, irrespective of source tissue, 

significantly increases survival and mesenteric perfusion while limiting intestinal damage and 

inflammation. Further studies are needed to identify the mechanism that these cells utilize to 

promote improved outcomes following injury.
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INTRODUCTION

Acute intestinal ischemia continues to be a life-threatening medical emergency with high 

morbidity and mortality [1]. Despite the recent therapeutic advances of endovascular 

techniques for early revascularization, mortality continues to be 30–68% [2] [3] [4]. During 

intestinal ischemia, the sudden decrease in intestinal blood flow may cause bowel infarction. 

And, if not discovered, it may rapidly progress to irreversible bowel necrosis, sepsis, 

multiple organ dysfunction, and ultimately death [1, 5]. Of the patients who survive 

following surgical resection, many are left with short bowel syndrome and consequently 

require long-term total parenteral alimentation or small bowel transplantation.

Early revascularization continues to be the optimal treatment to salvage the intestine. To date 

however, there have been no innovative treatment modalities aimed at recovering the 

infarcted bowel. Recent studies in the literature have demonstrated reversal of ischemia-

reperfusion (I/R) injury and recovery of bowel function with use of bone marrow-derived 

mesenchymal stromal cells (BMSCs) following I/R injury in animal models [6] [7] [8] [9] 

[10]. BMSCs have also been shown to decrease the inflammatory response through down-

regulation of inflammatory chemokines [11, 12] and mitigation of oxidative stress [13].

Mesenchymal stromal cells (MSCs) are pluripotent, immunomodulatory, proliferative 

progenitor cells that contribute to tissue repair and regeneration, possibly through the 

paracrine release of trophic growth factors such as interleukin-6 (IL-6), vascular endothelial 

growth factor (VEGF), epidermal growth factor (EGF), or insulin-like growth factor (IGF)

[14, 15] [16, 17]. They are mobilized in response to tissue injury with the potential to 

differentiate into adipogenic, osteogenic, chondrogenic and myogenic cells[16] [18]. MSCs 

are immunogenic, exhibit antioxidant properties [19], enhance neovascularization [20], 

reduce inflammation [21], and improve functional recovery of ischemic tissues [22]. BMSCs 

have been shown to ameliorate the destructive effects seen during intestinal ischemia by 
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decreasing intestinal permeability, villus injury, apoptosis, inflammation, and also by 

promoting recovery of the gut-mucosal barrier following injury [10, 23].

Prior to stromal cell therapy being used in the clinical setting, the optimal donor source for 

harvesting these cells must be identified. Although MSCs from different tissue sources have 

been shown to be similar in morphology and function, subtle differences may exist in their 

immunomodulatory profile which may be attributable to microenvironmental niche, method 

of harvest, or ontogenic age [24–26]. These differences may play a role in MSC reparative 

properties, and conflicting studies exist [27–29]. We therefore hypothesized that: (1) MSCs 

would increase survival and mesenteric perfusion, preserve intestinal histological 

architecture, and limit intestinal inflammation following intestinal ischemia and reperfusion 

injury (I/R), and 2) MSCs harvested from different source tissues would have equivalent 

protective properties to the intestine following I/R.

MATERIALS AND METHODS

Cell Culture

Three different human cell lines (bone marrow derived mesenchymal stromal cells-BMSCs, 

umbilical cord derived mesenchymal stromal cells-USCs, and keratinocytes) were used in 

our experiments. All cell lines were cultured in 225 cm2 polystyrene culture flasks at 37°C 

in a humidified atmosphere of 5% CO2 in air. Once cells reached 90% confluency they were 

lifted from the flask with TrypLE Express (Life Technologies), and passaged to expand 

primary cultures or used in experimentation. All MSC lines were used between passages 4–9 

and keratinocytes were used between passages 30–35. A fluorescent automated cell counter 

was used to count cells (Luna™ Automated Cell Counter, Logos Biosystems Inc., 

Annandale, VA).

Human BMSCs were obtained from Dr. Darwin Prokop at Texas A&M University. His lab is 

NIH funded to procure, purify, and verify BMSCs from human subjects. All BMSCs were 

reported to meet MSC defining criteria [30]. BMSCs were cultured in Alpha-MEM (Life 

Technologies, Grand Island, NY) with 16% Fetal Bovine Serum (FBS; Atlanta Biologicals, 

Flowery Branch, GA), 1% glutamine (Sigma, St. Louis, MO), and 1% penicillin-

streptomycin (MP Biomedicals, Solon, OH).

Human USCs were purchased from ATCC (Manassas, VA). Cells were positive for CD29, 

CD44, CD73, CD90, CD105, and CD166 and negative for CD14, CD31, CD34 and CD45. 

Cells were cultured in Mesenchymal Stem Cell Basal medium with Mesenchymal Stem Cell 

Growth Kit – Low Serum (ATCC, Manassas, VA).

Human nTERT keratinocytes were obtained from Dr. Jeffery Travers at Indiana University 

School of Medicine. These cells were originally purchased from ATCC (Manassas, VA). 

Cells were cultured in EpiLife Medium with the addition of Keratinocyte Growth Factor 

(Life Technologies, Grand Island, NY).
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In Vitro Cell Stimulation

Cells used for in vitro experiments were lifted from their flasks using TrypLE Express (Life 

Technologies). Cells were then pelleted at 400 g for 5 minutes and re-suspended in their 

respective medias. Cells were counted using an automated fluorescent cell counter (Luna™ 

Automated Cell Counter, Logos Biosystems Inc., Annandale, VA). One hundred thousand 

keratinocytes, BMSCs, or USCs were plated into each well of a 12 well plate and allowed to 

adhere to the plastic overnight. Media was changed the following day and cells were 

exposed to one of two noxious stimuli for 24 hours: 1) Tumor Necrosis Factor (TNF) 50 

ng/ml, or 2) lipopolysaccharides (LPS) 200 ng/ml. After 24 hours of exposure, supernatants 

were collected and stored at −20°C.

Assessment of Stromal Cell Paracrine Factors

Cytokines and growth factors produced by stromal cells in culture were quantified using 

enzyme-linked immunosorbent assay (ELISA) kits specific for human IL-6, vascular 

endothelia growth factor (VEGF), endothelial growth factor (EGF) and insulin-like growth 

factor I (IGF-I; R&D Systems, Minneapolis, MN, USA). Assays were performed according 

to the manufacturer’s instructions and diluted if necessary using the dilution buffer provided 

with the ELISA kits (n=8). Experiments were repeated to ensure accuracy.

Murine Intestinal I/R Model

The experimental protocol and animal use were previously approved by the Indiana 

University Institutional Animal Care and Use Committee. Wild-type adult male C57BL/6J 

mice (8–12 weeks, 20–30g; Jackson Laboratory, Bar Harbor, ME) were allowed 48 hours of 

acclimation to the new environment prior to experiment. They had access to normal chow 

and were kept in 12 hour light-dark cycle housing.

For surgery all mice were anesthetized with 3% isoflurane and maintained at 1.5% 

isoflurane intraoperatively. A heating pad was used for murine temperature homeostasis. The 

abdomen was prepped using a hair removal lotion followed by 70% ethanol and betadine. To 

account for intra-operative fluid losses one milliliter of 0.9% normal saline was injected 

subcutaneously prior to surgery.

A midline laparotomy was then performed and the intestines were eviscerated. The root of 

the superior mesenteric artery was identified and temporary arterial occlusion was 

accomplished with use of an atraumatic non-crushing microvascular clamp. Ischemia 

duration was 60 minutes. During ischemia the abdomen was temporary closed using silk 

suture to reduce evaporative losses. Following ischemia, the abdomen was reopened and the 

clamp was removed. The abdominal fascia and skin were then closed in a two layer fashion 

using silk suture. Prior to complete abdominal closure, 250μL PBS vehicle, or 2 × 106 of 

BMSCs, USCs, or keratinocytes re-suspended in 250μL of PBS were injected into the 

intraperitoneal cavity based on our previously reported dose response curves [6]. Triple 

antibiotic ointment was applied to the abdominal incision following complete closure 

andanalgesia (1mg/kg buprenorphine and 5 mg/kg caprofen) was injected subcutaneously. 

Murine animals were then allowed to awaken from anesthesia and underwent recovery 

within a cage placed on a heating pad. Once they recovered they were returned to animal 
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housing. All animal were monitored post-operatively for signs or symptoms of pain every 12 

hours and did not require additional analgesia. Animals that underwent 12 and 24 hour 

reperfusion studies were re-anesthetized at these time points and the midline incision was 

reopened. At the conclusion of these studies, animals were euthanized with isoflurane 

overdose and cervical dislocation.

Survival Analysis

Animals assigned to the survival protocol (N=10 for each group) were treated with: I/R + 

PBS vehicle, I/R + keratinocytes, I/R + BMSCs, or I/R + USCs. They were monitored twice 

daily for 7 days following surgery for death, pain, and incisional complications. End points 

of analysis included animal death or when Laboratory Animal Resource Center veterinarians 

felt animals were suffering and needed to be euthanized. Survival curves were created based 

on these end points. Remaining mice were euthanized with isoflurane overdose and cervical 

dislocation at completion of the 7 day designated time course.

Perfusion Analysis

After the midline incision was made and the bowels were eviscerated, baseline intestinal 

perfusion was assessed using a scanning laser-Doppler perfusion imager (LDI; Moor 

Instruments, Wilmington, DE). Three LDI images were taken for each mouse at each time 

point. Once the images were captured, the region of interest (ROI) was assessed. The 

boundaries of the ROI were drawn around the entirety of exposed intestines to obtain 

perfusion within this region. An average perfusion value was calculated based on the mean 

of all three images. Perfusion images were obtained at baseline, ischemia, and at 12 and 24 

hours of recovery (N=6–7 per group, respectively). Perfusion data was expressed as a 

percentage of baseline (Mean +/−SEM). Animals that died prior to 12 or 24 hour re-

perfusion analysis were arbitrarily assigned a perfusion value of zero.

Histology Injury Score

Following euthanasia of experimental groups, terminal ileums were harvested and fixed in 

4% paraformaldehyde with subsequent dehydration in 70% ethanol. Paraffin-embedded 

sections were prepared and stained with hematoxylin and eosin. Histological scoring of the 

depth of tissue injury was performed as previously described: 0, no damage; 1, subepithelial 

space at the villous tip; 2, loss of mucosal lining of the villous tip; 3, loss of less than half of 

the villous structure; 4, loss of more than half of the villous structure; and 5 transmural 

necrosis [6, 8]. Sections were evaluated blindly by two observers with all scores averaged.

Intestinal Cytokine Analysis

Following euthanasia of experimental groups, mouse intestinal tissues were harvested and 

snap frozen in liquid nitrogen and stored at −80°C. Once ready for use, intestinal tissue 

samples were thawed and homogenized in RIPA buffer (Sigma, St. Louis, MO) with 

protease and phosphatase cocktail inhibitors (1:100 dilution; Sigma, St. Louis, MO) using a 

Bullet Blender tissue homogenizer (Next Advance, Averill Park, NY). Homogenates were 

centrifuged at 12,000 rpm to pellet extraneous tissue and supernatants were transferred to 

fresh Eppendorf tubes for storage at −80°C. Total protein concentration was quantified by 
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Bradford assay using a spectrophotometer (VersaMax microplate reader; Molecular Devices, 

Sunnyvale, CA). Intestinal levels of murine interleukin-6 (IL-6), macrophage inflammatory 

protein 1 alpha (MIP-1α), macrophage inflammatory protein 2 alpha (MIP-2α), and 

interferon-γ-induced protein 10 (IP-10) were quantified with a Bio-Plex 200 multiplex 

beaded assay system (Bio-Rad, Hercules, CA) using customizable multiplex plates for 

murine inflammatory cytokines (Millipore, Billerica, MA). Assays were performed at 1:25 

dilution according to the manufacturer’s instructions and are reported as nanograms cytokine 

per gram of total intestinal protein (mean +/− SEM).

Statistical Analysis

Results are expressed as mean ± SEM. Statistical analyses were performed using SPSS 23 

software (SPSS, Chicago, IL). Statistical significance for the survival studies was assessed 

by the Mantel-Cox log rank test and the Gehan-Breslow-Wilcoxon test. Comparison of 

perfusion at 12 and 24 hours re-perfusion was assessed using one-way ANOVA and 

student’s t-test. Histology and cytokine analysis was performed using the Mann-Whitney U 

test for nonparametric variables. A p-value of less than 0.05 was considered statistically 

significant.

RESULTS

Stromal Cells Produce Varying Amounts of Paracrine Growth Factors

BMSCs and USCs produced higher levels of IL-6 at baseline and with LPS and TNF 

stimulation compared to keratinocytes (Figure 1A). USCs also produced significantly more 

IL-6 compared to BMSCs. BMSCs produced the highest levels of VEGF, while all USC 

groups had the lowest production of VEGF(Figure 1B). EGF production was only 

significantly elevated in USC groups while keratinocytes produced significantly more IGF 

than both BMSC and USC(Figure 1C,D).

MSCs Increase Survival Following Intestinal Ischemia and Reperfusion Injury

Survival was significantly improved in mice that received MSCs following I/R injury 

compared to mice that received PBS or the differentiated cellular control (keratinocytes) 

(Figure 2). In BMSC and USC treated groups, seven day survival was ninety percent. 

Survival was significantly lower in PBS treated animals (40%, p<0.05) and keratinocyte 

treated animals (20%, p<0.05). There was no statistically significant survival advantage 

observed between mesenchymal stromal cell lines. These data indicate that MSCs 

significantly improve survival following intestinal I/R and that survival is not significantly 

impacted by stromal cell tissue source.

MSCs significantly increase intestinal perfusion following I/R injury

Intestinal perfusion was compared in all four treatment groups at 12 and 24 hours after I/R 

by using LDI (Figure 3A). At 12 hours of reperfusion, PBS treated groups had significantly 

lower perfusion levels (21.65±10.2%) compared to BMSCs (76.79±4.88%, p=0.001) and 

USCs (95.93±5.35%,p<0.001, Figure 3B). There was no difference between keratinocyte 

and PBS treated groups. BMSC and USC treated groups maintained significantly higher 

levels of perfusion at 12 hours compared to keratinocytes (p<0.05).
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After 24 hours of reperfusion, all MSC lines (BMSC: 74.1±10.51%, USC: 67.26±6.46%) 

maintained significantly higher levels of perfusion compared to both PBS 

(25.59±6.049%,p<0.05) and keratinocyte treated groups (24.98±11.31%, p<0.05, Figure 

3B). No significant differences in perfusion were observed between any of the MSC treated 

groups at either 12 or 24 hours re-perfusion. These data indicate that MSCs promote better 

post-ischemic functional recovery compared to differentiated cells, and that differences in 

stromal cell source tissue does not impact perfusion parameters after intestinal I/R.

MSCs improve histological architecture following I/R Injury

Significant sloughing of intestinal mucosa and destruction of the epithelial layer in the cypt-

villous architecture was seen in vehicle and differentiated cell control groups. However, 

these findings were abated with use of MSCs (Figure 4A). As expected, intestinal 

histological architecture following I/R injury at both 12 and 24 hours of reperfusion was 

significantly improved with use of each of the MSCs (Figure 4B).

In the 12 hour reperfusion groups, mean injury score ± SEM was significantly worse in PBS 

(3.071±0.425) and keratinocyte (3.143±0.4174) groups compared to BMSCs (1.077±0.2646, 

p=<0.001) and USCs (1±0.9608, p=<0.001). After 24 hour reperfusion, mean injury scores 

± SEM were also significantly improved in all MSC treated groups (BMSCs 

(1.063±0.2322), USCs (0.4375±0.1819)) compared to both PBS (3.5±0.3887, p=<0.001) 

and keratinocytes (3.5±0.5109, p=<0.001). There were no statistically significant differences 

in injury scores between keratinocytes and PBS in 12 and 24 hour reperfusion groups. There 

were no statistically significant differences in injury scores between MSC treated groups at 

either 12 or 24 hours of reperfusion. These data indicate that MSCs have a significant impact 

in preserving the intestinal histologic architecture following I/R injury.

Intestinal Cytokine Analysis

Mouse intestinal IL-6 levels were significantly lower in BMSC treated intestines compared 

to keratinocyte treated groups at 12 and 24 hours of reperfusion. In the 24 hour groups, IL-6 

levels were also lower in BMSC treated groups compared to vehicle treated groups(Figure 5-

A,B).

Mip-1α levels were significantly lower in USC treated intestines at 12 hours and BMSC 

treated intestines at 24 hours compared to PBS. No difference was seen in Mip1α levels 

between MSC treated groups at 12 hours (Figure 5C–D). Mip2α levels were significantly 

lower in intestines treated with BMSCs at 12 hours and at 24 hours compared to vehicle. 

Mip2α levels were also lower in BMSC treated intestines at 12 hours compared to 

keratinocytes. No differences in intestinal Mip2α levels were seen between MSC groups at 

12 or 24 hours (Figure 5E–F).

Levels of IP-10 in intestines treated with BMSCs and USCs at 12 hours of reperfusion were 

significantly lower than vehicle treated groups. Levels of IP-10 were also lower in BMSC 

treated intestines at 12 hours compared to keratinocytes. No differences between MSCs were 

observed in intestinal IP-10 levels at 12 hoursand at 24 hours of reperfusion (Figure 5G–H).
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DISCUSSION

Intestinal ischemia continues to be a cause of high morbidity and mortality [1]. It is 

associated with a variety of clinical conditions and can lead to irreversible bowel necrosis, 

sepsis, massive bowel resection and even death [1, 5]. The ultimate therapeutic goal in 

patients with intestinal ischemia is to restore blood flow to ischemic tissues prior to the 

development of necrosis and bowel wall perforation. The use of stromal cell therapy for 

ameliorating the destructive effects of intestinal ischemia is a novel therapeutic approach to 

treating this disease. In order to prepare for clinical applications of this therapy, the optimal 

donor source tissue for MSC harvest needs to be identified. Herein we demonstrated that 

MSCs from several different tissue sources yielded similar post-ischemic survival results, 

maintained equivalent improvements in mesenteric perfusion, and significantly improved 

histological architecture following intestinal I/R.

We have previously demonstrated that MSCs protect the intestines following I/R injury and 

promote survival [6]. In this study, we observed a distinct survival advantage with the use 

several MSC lines when compared to differentiated cellular control cells. When this work is 

compounded with our previous research using adipose-derived stromal cells (ASCs), it 

further confirms that stromal cell harvest source does not impact intestinal protection 

following intestinal I/R injury. With ASC therapy, we observed similar improvements in 

survival (80%), perfusion (71.14±11.85% at 12 hours, 61.13±11.89% at 24 hours), and 

histological injury scores (0.6875±0.2989 at 12 hours, and 0.5±0.2030 at 24 hours) as 

compared to therapy with BMSCs and USCs [31]. No significant differences were observed 

in the protective power of these mesenchymal stromal cells.

With all MSC lines we observed a distinct survival advantage that was associated with 

improvements in mesenteric vascular perfusion and preservation of intestinal integrity. 

Improved perfusion restored blood flow and tissue oxygen levels to physiologic levels which 

likely prevented intestinal mucosal injury, sloughing, and the impending bacterial 

translocation and sepsis that would likely have ensued. It is unclear though, how the cells 

promoted improved mesenteric perfusion, but it may be in part to the release of specific 

paracrine mediators [32, 33] from these cells. In this study, each cell line appeared to have a 

different cytokine profile, with BMSCs producing higher levels of VEGF, USCs producing 

higher levels of EGF, and neither stromal cell line producing significant amounts of IGF. It is 

unlikely that a single paracrine factor mediates the beneficial effects seen, but rather that a 

combination of factors in the right concentration facilities the observed effects. Future 

studies are aimed to determine the specific properties of the MSCs that promote improved 

outcomes.

Although MSCs from bone marrow, adipose tissue, and umbilical cords demonstrated global 

improvements in survival, mesenteric perfusion, and histology following I/R injury, the 

levels of proinflammatory chemokines within the intestinal tissues themselves were only 

moderately affected. MIP-1α, MIP-2α, IL-6 and IP-10 are all pro-inflammatory chemokines 

which facilitate mobilization of leukocytes to sites of injury [6, 34, 35]. Due to improved 

perfusion and intestinal integrity, we expected these chemokines to be lower as well in all 

MSC treated groups. However, only the BMSC treated groups showed consistent decreases 
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in these proinflammatory chemokines. These data suggest that subtle differences likely exist 

in MSCs, and that BMSCs may function more effectively to limit inflammation compared to 

mesenchymal stromal cells from other sources.

Although comparative studies of stromal cells from different sources have been previously 

performed, we are aware of only one other study in an intestinal ischemia and reperfusion 

model. The study by Watkins, et al. compared amniotic fluid-derived (AF) MSCs to BMSCs 

and found that both cell types were equivalent in improving histological injury score and gut 

permeability following injury [8]. They did note better engraftment of AFMSCs into the 

intestinal architecture, but these results were likely due to the additional experimental drugs 

that they were studying. Our combined studies examined ASCs, USCs, BMSCs, and 

AFMSCs and noted no functional differences in end organ protection with the use of any of 

these particular cell lines. Therefore, we can conclude that, although subtle differences likely 

exist in MSCs based on their microenvironment and tissue of harvest, the end organ 

protection that they provide is quite similar.

LIMITATIONS

This study has several limitations that may affect the impact of the results. First, we only 

tested two different mesenchymal stromal cell lines in this study, but we did compare it with 

an additional adipose stromal cell line from a previous study and found no differences in 

their protective power [31]. Although we demonstrated similar and markedly improved 

survival, mesenteric perfusion, and histological preservation following injury among all 

these cell lines, it is possible that other mesenchymal cells from an untested tissue source 

may provide differing results. Additionally, studied cell lines could have marked differences 

in their molecular response to injury. Future studies are designed to probe these cells to 

determine if subtle differences exist at the molecular level.

Furthermore, human cells were utilized in this study as a preclinical assessment in a mouse 

model of intestinal I/R injury. Cross species transplantation usually does not have effective 

results in immunocompetent hosts. However, mesenchymal stromal cells, including those of 

bone marrow, adipose, or umbilical origin, have unique immunomodulatory properties that 

suppress T-lymphocyte proliferation and allow them to be transplanted across species [6, 

36].

An additional limitation exists in the assessment of tissue cytokines. Despite normalizing for 

total protein concentration, a wide variation of levels was observed both within and between 

group samples. Although the same relative area of intestine was procured from each subject, 

it is likely that tissue levels of cytokines are not equivalent throughout even small segments 

of tissue.

Lastly, multiple mechanisms for stromal cell protective effects have been postulated. One 

such mechanism surrounds stromal cell engraftment. It is possible that one of the MSC lines 

may provide better intestinal protection, but may engraft poorly, thereby yielding equivalent 

results to cell lines that may provide less protection but engraft at a much better rate. Further 

studies that label and track stromL cells once transplanted could yield further insight into 
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engraftment possibilities. An additional mechanism of effect surrounds the paracrine release 

of vital substrates from the cells. It is beyond the scope of this current study to test each of 

these potential substrates. If one or two substrates could be identified, it is possible to create 

a drug cocktail that would provide maximum end organ protection without the need for cell 

therapy.

CONCLUSION

In conclusion, MSC therapy is a viable novel treatment option for acute intestinal ischemia. 

Herein, we demonstrated that stromal cells from different source tissues provide equivalent 

protection from intestinal I/R injury. All tested MSCs improved survival and small bowel 

perfusion, while also preserving histological architecture. BMSCs appeared to have a more 

profound effect on reducing tissue inflammatory chemokines. Although multiple benefits to 

stromal cell therapy have been observed, the intracellular mechanisms of end organ 

protection are still not fully understood. Therefore, further studies to define these 

mechanisms are required before stromal cell therapy can be applied to widespread clinical 

use.
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Figure 1. 
Supernatant cytokine analysis following in vitro experiments with keratinocytes, BMSCs 

and USCs exposed to noxious stimuli (LPS, TNF). Production of trophic growth factors 

varied with stromal cell source for IL-6 (A), VEGF (B), EGF (C), and IGF-I (D) *=p<0.05 

versus keratinocytes, #=p<0.05 versus BMSCs.
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Figure 2. 
Kaplan-Meier plots for 7 day survival after ischemia-reperfusion injury of each MSC 

treatment group. Both mesenchymal stromal cell lines significantly increased 7 day survival 

compared to PBS vehicle control and keratinocytes (p<0.05). No survival benefit was seen 

with the use of keratinocytes (differentiated cell control). No statistically significant survival 

difference was observed between mesenchymal stromal cell lines. (*=p<0.05 versus PBS, 

#=p<0.05 versus keratinocytes)
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Figure 3. 
Mesenchymal stromal cells increase mesenteric perfusion following ischemia. A) 

Representative images of perfusion in all cells lines at baseline, ischemia, 12 hours 

reperfusion, and 24 hours reperfusion. B) BMSC and USC therapy significantly increased 

mesenteric perfusion above vehicle and keratinocytes at both 12 and 24 hours of reperfusion. 

No differences in mesenteric perfusion were observed between MSC treated groups. 

(*=p<0.05 versus PBS, #=p<0.05 versus keratinocytes)
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Figure 4. 
Histological examination of small intestine following intestinal ischemia (I/R) and MSC 

treatment. A) Representative histology slides of each treatment group (hematoxylin and 

eosin stain, ×40). B) Histological scoring of intestinal specimens: 0, no damage; 1, sub-

epithelial space at the villous tip; 2, loss of mucosal lining of the villous tip; 3, loss of less 

than half of the villous structure; 4, loss of more than half of the villous structure; and 5, 

transmural necrosis. Statistically significant improvement in histological grade in both MSC 

lines compared to PBS (*) and keratinocytes (#) respectively (*,# p=<0.05).
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Figure 5. 
Cytokine analysis following I/R injury and treatment at 12 and 24 hours. Following I/R 

mouse intestines were probed for murine expression of IL-6 (A–B), Mip1α (C–D), Mip2α 
(E–F), and IP-10 (G–H) *=p<0.05 versus PBS, #=p<0.05 versus Keratinocytes.
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