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ABSTRACT 

Rachel Diane Mullen 

 

IN VIVO ANALYSIS OF HUMAN LHX3 GENE REGULATION 

 

LHX3 is a transcription factor important in pituitary and nervous system 

development. Patients with mutations in coding regions of the gene have combined 

pituitary hormone deficiency (CPHD) that causes growth, fertility, and metabolic 

problems. Promoter and intronic elements of LHX3 important for basal gene expression 

in vitro have been identified, but the key regulatory elements necessary for in vivo 

expression were unknown. With these studies, I sought to elucidate how LHX3 gene 

expression is regulated in vivo. Based on sequence conservation between species in non-

coding regions, I identified a 7.9 kilobase (kb) region 3' of the human LHX3 gene as a 

potential regulatory element. In a beta galactosidase transgenic mouse model, this region 

directed spatial and temporal expression to the developing pituitary gland and spinal cord 

in a pattern consistent with endogenous LHX3 expression. Using a systematic series of 

deletions, I found that the conserved region contains multiple nervous system enhancers 

and a minimal 180 base pair (bp) enhancer that direct expression to both the pituitary and 

spinal cord in transgenic mice. Within this minimal enhancer, TAAT/ATTA sequences 

that are characteristic of homeodomain protein binding sites are required to direct 

expression. I performed DNA binding experiments and chromatin immunoprecipitation 

assays to reveal that the ISL1 and PITX1 proteins specifically recognize these elements 

in vitro and in vivo. Based on in vivo mutational analyses, two tandem ISL1 binding sites 
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are required for enhancer activity in the pituitary and spine and a PITX1 binding site is 

required for spatial patterning of gene expression in the pituitary. Additional experiments 

demonstrated that these three elements cannot alone direct gene expression, suggesting a 

combination of factors is required for enhancer activity. This study reveals that the key 

regulatory elements guiding developmental regulation of the human LHX3 gene lie in this 

conserved downstream region. Further, this work implicates ISL1 as a new 

transcriptional regulator of LHX3 and describes a possible mechanism for the regulation 

of LHX3 by a known upstream factor, PITX1. Identification of important regulatory 

regions will also enable genetic screening in candidate CPHD patients and will thereby 

facilitate patient treatment and genetic counseling. 

 

Simon J. Rhodes Ph.D., Chair 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Pituitary Structure and Function 

The pituitary is located near the base of the brain in the sella turcica (a depression 

of the sphenoid bone), and secretes hormones which regulate many essential processes 

including development, the stress response, growth, reproduction, metabolism, and 

lactation. The pituitary has dual embryonic origins consisting of a posterior lobe 

originating from the neuroectoderm, or diencephalon, and the intermediate and anterior 

lobes developing from an invagination of the oral ectoderm known as Rathke’s pouch. 

The release of pituitary hormones in response to physiological conditions is mediated by 

signals from the hypothalamus. 

Two major hormones are secreted by the posterior lobe: arginine vasopressin 

(AVP) and oxytocin (OT). AVP controls osmotic balance by regulating water absorption 

in the kidneys and OT is required to stimulate muscle contractions during parturition and 

lactation. The posterior lobe connects directly to the hypothalamus via the infundibulum 

or pituitary stalk. Magnocellular neurons (MCN) originate in the supraoptic nuclei and 

paraventricular nuclei of the hypothalamus and extend through the pituitary stalk into the 

posterior lobe. AVP and OT are synthesized in MCN and transported along their axons to 

a capillary bed in the posterior lobe where they are secreted into the blood.  

The intermediate lobe of the pituitary secretes α-melanocyte-stimulating hormone 

(αMSH) from melanotrope cells. αMSH is produced by proteolytic processing of its 

prohormone from the pro-opiomelanocortin (POMC) gene. Alpha MSH has functions in 
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skin pigmentation and dark adaptation in lower vertebrates. The human intermediate lobe 

is less pronounced than in other vertebrates consisting of only a thin layer of cells. 

Because of the diminutive size of the human intermediate lobe, humans produce little 

αMSH. 

Five hormone-secreting cell types are found in the anterior pituitary: 

corticotropes, gonadotropes, thyrotropes, somatotropes, and lactotropes secreting 

adrenocorticotropic hormone (ACTH, a product of the POMC gene), follicle-stimulating 

hormone (FSH) and luteinizing hormone (LH), thyroid-stimulating hormone (TSH), 

growth hormone (GH), and prolactin (PRL), respectively. Glycoprotein hormones TSH, 

FSH, and LH are composed of a unique beta subunit (TSHβ, FSHβ and LHβ) and a 

common alpha-glycoprotein subunit (αGSU). Hormones secreted from the human 

anterior pituitary have key roles in development, the stress response (ACTH), 

reproduction (FSH, LH, and PRL), metabolism (TSH), growth (GH), and lactation 

(PRL). The hormone-secreting cell types are observed to differentiate in a distinct dorsal 

to ventral pattern in the developing pituitary. In the dorsal portion of the anterior 

pituitary, corticotropes, somatotropes, lactotropes are observed. Thyrotropes are found in 

the rostral tip and central portion of the lobe and gonadotropes arise ventrally (Dasen et 

al., 1999; Kioussi et al., 1999; Lin et al., 1994). 

Hormone release by secreting cell types in the anterior and intermediate pituitary 

is positively and negatively regulated by hypophysiotropic hormones (e.g. release of GH: 

GH-releasing hormone, inhibition of GH: somatostatin). Hypophysiotropic hormones 

secreted from the median eminence of the hypothalamus are transported via the 

hypophyseal portal blood system and bind specific cell surface receptors (e.g. GH-
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releasing hormone receptor, somatostatin receptor) in the anterior and intermediate 

pituitary resulting in hormone (e.g. GH) release or inhibition. 

1.2 Early Signaling Events in Pituitary Development 

Signaling gradients between multiple factors in the diencephalon and oral 

ectoderm result in the invagination of the oral ectoderm to form Rathke’s pouch, the 

primordium of the anterior pituitary lobe (Figure 1.1). The first step in the formation of 

the anterior pituitary is a thickening of the oral ectoderm and invagination to form 

Rathke’s pouch, the primordial structure of the anterior pituitary. Based on findings from 

multiple studies in mice, this initial step is dependent on bone morphogenetic protein 

(BMP) 4 signals originating in the adjacent ventral diencephalon (Davis and Camper, 

2007; Sheng et al., 1997; Takuma et al., 1998). This invagination brings Rathke’s pouch 

in close contact with the adjacent ventral diencephalon and promotes further the 

proliferation and differentiation signaling events required for the formation of the mature 

pituitary gland.  

Subsequently, BMP2 and BMP7 expression is initiated in the ventral 

mesenchyme adjacent to Rathke’s pouch and expands into the pouch in a ventral to dorsal 

pattern (Ericson et al., 1998; Gleiberman et al., 1999). Signaling gradients involving 

BMPs and fibroblast growth factors (FGF) 8, FGF10, and FGF18 have key roles in dorsal 

to ventral patterning of the pituitary gland. Dorsally, FGFs are thought to maintain 

Rathke’s pouch cells in a proliferative state and prohibit cell cycle exit. As cells migrate 

ventrally, FGF levels are reduced and cells exit the cell cycle and differentiate into 

definitive hormone cell types. Ventrally, BMPs promote ISL1 (described in section 1.4) 
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and αGSU expression and ventral cell types in the anterior pituitary in part by opposing 

FGF signaling (Ericson et al., 1998; Kimura et al., 1996; Norlin et al., 2000).  

Sonic hedgehog (SHH), expressed both in the ventral diencephalon and 

throughout the oral ectoderm, is excluded from Rathke’s pouch (Treier et al., 1998; 

Treier et al., 2001). Studies have shown that SHH signaling has important roles in 

pituitary development. Blocking the pathway with the SHH antagonist hedgehog 

interacting protein in Rathke’s pouch arrested pituitary development, and over expression 

of SHH in the developing pituitary of mice resulted in pituitary hyperplasia (Treier et al., 

2001). Other signaling molecules and transcription factors in the ventral diencephalon 

important for proper pituitary development include the LIM homeodomain (HD) protein 

LHX2, SOX3, WNT5a, and NKX2.1 (Alatzoglou et al., 2009; Cha et al., 2004; Potok et 

al., 2008; Takuma et al., 1998; Zhao et al., 2010). 

1.3 Transcriptional Regulation of Anterior Pituitary Development 

Further differentiation and proliferation events controlled by a cascade of 

transcription factors results in development of the anterior pituitary and establishment of 

the hormone-secreting cell types (Figure 1.1) [reviewed in (Kelberman et al., 2009; Zhu 

et al., 2007)]. Signaling molecules and transcription factors found in the anterior pituitary 

required for these developmental events include GLI1, GLI2, EYA1, SIX1, SIX3, SIX6, 

PAX6, HESX1, SOX2, PITX1, PITX2, ISL1, LHX3, and LHX4 (described in section 

1.4), and PROP1.  

GLI1, GLI2, and GLI3 are downstream transcription factors expressed in 

Rathke’s pouch in response to SHH signaling. Gli1-/- mice have variable loss of the 

pituitary while Gli1-/-/ Gli2-/- double knockout mice have a more severe phenotype; in 
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addition to defects in the ventral diencephalon, all have aplastic pituitaries (Park et al., 

2000). Heterozygous mutations within the human GLI2 gene cause variable forms of 

holoprosencephaly with hypoplastic or absent pituitaries and variable defects in facial 

structures (Roessler et al., 2003).  

The SIX gene family members are mammalian homologs of Drosophila 

melanogaster sine oculis homeobox containing genes and act as part of protein 

complexes containing the co-repressor recruiter DACH and the EYA phosphatase. SIX1, 

SIX3, and SIX6 are expressed in the developing pituitary [reviewed in (Kawakami et al., 

2000)]. Studies in mice and zebrafish have shown that SIX1 and EYA1 have cooperative 

functions in pituitary development. Double knockdown of SIX1 and EYA1 in zebrafish 

results in a failure to develop corticotropes, melanotropes, and gonadotropes. 

Somatotropes and thyrotropes are present but fail to express GH and TSHβ (Nica et al., 

2006). The Six1-/- / Eya1-/- double knockout mice have hypoplastic pituitary glands (Li et 

al., 2003). In Six3-/- mice, early inductive events are disrupted and Rathke’s pouch fails to 

form and mice double heterozygous for Six3 and Hesx1 null alleles have hypopituitarism 

(Gaston-Massuet et al., 2008; Lagutin et al., 2003). Six6 knockout mice have defects in 

retinal, optic nerve and pituitary development. SIX6 also represses transcription of cell 

cycle inhibitors thereby promoting cellular proliferation in the developing retina and 

pituitary (Li et al., 2002). 

PAX6 is a paired HD transcription factor important in the development of several 

tissues including the eye, nervous system, pancreas, and pituitary (Bentley et al., 1999; 

Dohrmann et al., 2000; Terzic and Saraga-Babic, 1999). The Small eye Pax6 mutants and 

Pax6-/- mice have defects in dorsal to ventral patterning of the pituitary that results in 
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reduced numbers of somatotropes and lactotropes dorsally and an increase in thyrotropes 

and gonadotropes ventrally (Kioussi et al., 1999). Recently the only surviving patient 

with a compound heterozygous mutation in the PAX6 gene was described presenting with 

severe developmental defects consistent with single heterozygous mutations plus a 

hypoplastic pituitary (Solomon et al., 2009).  

In mouse and humans, the paired-class HD transcription factor HESX1 is 

expressed first in the neural plate and later restricted to the forebrain, ventral 

diencephalon and Rathke’s pouch by e9.5 (Hermesz et al., 1996; Sajedi et al., 2008; 

Thomas et al., 1995). LHX3 is required during early pituitary development to maintain 

HESX1 expression (Sheng et al., 1997). Then as differentiation proceeds of specific 

hormone-secreting cell types, Hesx1 is down regulated by the PROP1 paired homeobox 

protein (described below) and becomes undetectable by e15.5 (Gage et al., 1996; 

Hermesz et al., 1996). HESX1 is capable of repressing Prop1 gene expression by 

recruiting co-repressor complexes containing Groucho-like TLE proteins and histone 

deacetylases (Brickman et al., 2001; Carvalho et al., 2010; Dasen et al., 2001). Hesx1-

null and human mutation knock-in mouse models have defects in eye, olfactory, and 

forebrain development and pituitary dysplasia (Dattani et al., 1998; Sajedi et al., 2008). 

Similarly, HESX1 mutations in human patients are associated with septo-optic dysplasia 

and pituitary abnormalities (Dattani et al., 1998; Sobrier et al., 2005; Thomas et al., 

2001).  

The SRY-related high mobility group box (SOX) 2 transcription factor has 

important roles in anterior pituitary development. During pituitary development, SOX2 is 

first expressed in the ectoderm and by e11.5 throughout Rathke’s pouch, but as cell 
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differentiation proceeds its expression is down regulated in a manner similar to HESX1. 

By e18.5 expression is found only in the lumen of Rathke’s pouch and the mature gland, 

in the region thought to contain the adult stem cell population of the pituitary (Fauquier et 

al., 2008; Kelberman and Dattani, 2006). Sox2-null mice die shortly after implantation 

prior to pituitary development (Avilion et al., 2003). The roles of SOX2 in pituitary 

development have been partially elucidated in studies of heterozygous mice and humans. 

A portion of surviving Sox2+/- heterozygous mice have mild hypopituitarism and mild 

hypoplasia of the anterior pituitary with bifurcations in Rathke’s pouch (Alatzoglou et al., 

2009; Avilion et al., 2003; Ferri et al., 2004; Kelberman and Dattani, 2006). Humans with 

heterozygous mutations in SOX2 display pleiotrophic symptoms including bilateral 

anophthalmia or severe microphthalmia, anterior pituitary hypoplasia and gonadotropin 

deficiency (Fantes et al., 2003; Kelberman et al., 2008; Kelberman et al., 2006; 

Williamson et al., 2006). Human mutations in either the SOX2 or LHX3 genes are also 

sometimes associated with sensorineural hearing loss in addition to pituitary defects. The 

two proteins have overlapping expression patterns in the developing ear and pituitary and 

SOX2 can bind and activate the LHX3a promoter in vitro suggesting a possible role in 

LHX3 gene regulation (Rajab et al., 2008). 

The bicoid-like HD transcription factors PITX1 and PITX2 are required for the 

proper development of multiple organs including the heart, limbs, and pituitary. PITX1 

was first identified as a protein-protein partner of the pituitary transcription factor, PIT1 

(Szeto et al., 1996). PITX1 also regulates expression of the POMC gene in early pituitary 

development (Lamonerie et al., 1996). Pitx1-/- mice have morphologically normal 

pituitaries; however there are reductions in the number of gonadotropes and thyrotropes 
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present and LHβ and TSHβ levels and an increase in ACTH levels (Szeto et al., 1999). 

Both PITX1 and PITX2 recognize and bind the hormone promoters αGSU, TSHβ, LHβ, 

FSHβ, GnRHR, PRL, and GH (Tremblay et al., 2000). Knock down of PITX1 in vitro 

causes a loss of both Lhx3 and αGSU expression (Tremblay et al., 1998). Further in vivo 

experiments show PITX1 or PITX2 are required for activation of Lhx3 during early 

pituitary development (Charles et al., 2005). 

PITX2 is found in both the developing and adult pituitary gland (Gage and 

Camper, 1997; Semina et al., 1996). Pitx2 gene activation is induced by the WNT-

activated beta-catenin pathways during early pituitary development (Baek et al., 2003; 

Kioussi et al., 2002) and PITX2 promotes cellular proliferation by activating transcription 

of critical cell cycle regulators (Baek et al., 2003; Kioussi et al., 2002). Pitx2-/- mice have 

developmental defects in the heart, tooth, eye and pituitary and disruption of normal left-

right asymmetry (Lin et al., 1999; Logan et al., 1998; Lu et al., 1999; Piedra et al., 1998; 

Ryan et al., 1998; Yoshioka et al., 1998). The pituitary defects of the Pitx2-null mice are 

more severe than the Pitx1-null mice and pituitary development is arrested at e12.5 (Gage 

et al., 1999). Further studies of Pitx2 neo/neo hypomorphs demonstrated PITX2 is required 

for proper pituitary development and the differentiation of gonadotropes, thyrotropes, 

somatotropes, and lactotropes (Suh et al., 2002). Both PITX1 and PITX2 proteins are 

found primarily to co-localize with gonadotropes and thyrotropes in the adult pituitary. 

However, mice with tissue-specific knock out of Pitx2 in adult gonadotropes are normal 

(Charles et al., 2008; Charles et al., 2005). This demonstrates that PITX2 is not required 

for gonadotrope function and maintenance. However, similar to the overlapping functions 

seen in early development, PITX1 may be compensating for the loss of PITX2 in this 
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mouse model. PITX2 mutations in humans are a known molecular cause of Rieger 

syndrome, iridogoniodysgenesis syndrome, type 2 autosomal dominant iris hypoplasia, 

and Peter’s anomaly (Alward et al., 1998; Doward et al., 1999; Kulak et al., 1998; 

Semina et al., 1996). 

The paired-like HD transcription factor, Prophet of PIT1 (PROP1), is expressed 

exclusively in the developing pituitary and is required for its proper development and 

function (Sloop et al., 2000; Sornson et al., 1996). PROP1 can act as either a 

transcriptional activator or repressor (Nasonkin et al., 2004). For example, the PROP1/β-

catenin complex has been shown to activate Pit1 transcription and repress Hesx1 

transcription depending which cofactors are present (Olson et al., 2006). PROP1 

expression in the developing pituitary is initiated at e10 to e10.5, peaks at e12.5 and then 

declines after e14.5 (Sornson et al., 1996). The Ames dwarf mouse is a naturally 

occurring mutant mouse found to have a point mutation resulting in a defective DNA 

binding HD. Ames and Prop1-null mice have identical phenotypes. Both have 

hypoplastic pituitaries with deficiencies in GH, TSH, LH, FSH, and PRL and fail to 

express PIT1 (Gage et al., 1996; Sornson et al., 1996; Tang et al., 1993). In these mouse 

models, proliferation of progenitors in the perilumenal region is not affected but the cells 

fail to migrate. This results in a pituitary which first appears enlarged at e14.5 with 

abnormal morphology, and then later as a result of increased apoptosis is hypoplastic 

(Ward et al., 2005). This wax and wane in pituitary size has also been observed in some 

human patients with PROP1 mutations. PROP1 gene mutations in humans are the most 

common known cause of combined pituitary hormone deficiency (CPHD) and patients 

have hormone deficiencies like those seen in the Prop1 mutant mouse models (Cushman 



10 
 

et al., 2002; Wu et al., 1998). The results of several transgenic mouse over-expression 

studies have demonstrated that tight temporal control of Prop1 gene expression is 

required for proper pituitary development. Expression of PROP1 early throughout 

Rathke’s pouch ablates pituitary development and prolonged expression in gonadotropes 

and thyrotropes delays gonadotrope development and leads to pituitary tumors (Cushman 

et al., 2001; Dasen et al., 2001; Dasen and Rosenfeld, 2001). Double knockout of Lhx4 

and Prop1 in mice more severely affects pituitary development than single knockout of 

either gene. Corticotrope differentiation is delayed and the other hormone-secreting cells 

fail to develop. This indicates LHX4 and PROP1 together regulate differentiation and 

expansion events in the developing pituitary gland (Raetzman et al., 2002). 

Further actions by downstream transcription factors including PIT1, SF1 and 

TPIT are also required for differentiation and specification of specific hormone-secreting 

cell types. PIT1 (also POU1F1, and GHF1) is a POU-HD transcription factor required for 

specification of somatotropes, thyrotropes, and lactotropes. Steroidogenic factor (SF) 1 is 

essential for gonadotrope development. A T-box class transcription factor, known as 

TBX19 or TPIT, has key roles in specification of cortitropes and directly activates POMC 

expression with PITX1 (Figure 1.1) [reviewed in (Kelberman et al., 2009; Zhu et al., 

2007)]. 

1.4 LIM-HD Transcription Factors ISL1, LHX3, and LHX4 

ISL1 

Islet (ISL) 1 is a member of the LIM-HD family of transcription factors. LIM-HD 

transcription factors contain two zinc finger LIM domains important for protein-protein 

interactions and a central DNA binding homeodomain domain [reviewed in (Hunter and 
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Rhodes, 2005)]. ISL1 was first found in the pancreas and was shown to regulate insulin 

gene expression via the insulin gene enhancer (Karlsson et al., 1990). ISL1 is expressed 

in a wide variety of tissues including the pituitary, thyroid, kidney, spinal cord, 

hypothalamus, diencephalon, telencephalon, inner ear and pancreas (Dong et al., 1991; 

Karlsson et al., 1990; Mitsiadis et al., 2003; Radde-Gallwitz et al., 2004; Thor et al., 

1991). ISL1 is the first LIM-HD protein expressed during mouse pituitary development 

and is detectable at e8.5 throughout the oral ectoderm and Rathke’s pouch (Ericson et al., 

1998; Pfaff et al., 1996). Between e10.5 and e11.5 in mouse, Isl1 is repressed dorsally in 

response to FGF8 signals from the neuroectoderm and becomes restricted to the ventral 

portion of the developing pituitary and is co-expressed with αGSU (Ericson et al., 1998). 

Rathke’s pouch is formed but its development is blocked in Isl1-null mice. The pituitary 

defect in the Isl1 knockout is similar to Lhx3-null mice and LHX3 expression is absent 

from the pituitary. However, ISL1 is thought to block differentiation at an earlier stage 

rather than acting directly upstream of LHX3 (Takuma et al., 1998). In Lhx3-null mice, 

ISL1 expression is activated normally in the pituitary at e9.5, but is transiently lost at 

e12.5. Later ISL1 expression returns but is found ectopically in the dorsal region of the 

gland (Ellsworth et al., 2008). These experiments suggest LHX3 may regulate Isl1 

expression both positively at e12.5 and later negatively in the dorsal pituitary. ISL1 is 

found primarily in the gonadotropes of the adult pituitary and positively regulates FSHβ 

and LHβ transcription and mediates leptin regulation of their synthesis (Liu et al., 2005a; 

Liu et al., 2005b; Wu et al., 2010). ISL1 and LHX3 act together in gonadotropes to trans-

activate the gonadotropin releasing hormone receptor, GnRH-R promoter (Granger et al., 

2006b). 
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ISL1 also has important roles in neural development. Conditional Isl1 

motoneuron knockouts fail to develop motoneurons and a subpopulation of interneurons, 

and do not have any markers of motoneuron development (Pfaff et al., 1996). In the 

spinal cord, ISL1 functions as a part of a combinatorial code of regulatory transcription 

factors, including ISL2, LHX3, and NLI, that direct proper differentiation of neural 

progenitor cells into either motoneurons or interneurons (Jurata et al., 1998; Thaler et al., 

2002; Tsuchida et al., 1994). Similarly, ISL1 is necessary for bipolar interneuron 

development in the retina. Mice with conditional knockouts of Isl1 in the neural retina 

have vision loss and defects in biopolar interneuron differentiation. LHX3 and LHX4 are 

also expressed in bipolar interneurons at P9 and partially co-localize with ISL1. In the 

neural retina conditional knockout of Isl1, LHX4 expression is maintained however 

LHX3 expression is lost (Elshatory et al., 2007).  

LHX3 

The LHX3 LIM-HD protein consists of two N-terminal tandem repeat zinc finger 

LIM motifs followed by a DNA binding homeodomain and a proline rich C-terminus 

(Bach et al., 1995; Seidah et al., 1994; Zhadanov et al., 1995). The LHX3 gene has seven 

coding exons and six introns, and produces two mRNAs, LHX3a and LHX3b, that result 

in three protein isoforms: LHX3a, LHX3b, and M2-LHX3 (Sloop et al., 2001). The two 

messages, LHX3a and LHX3b, are produced from alternative splicing of exon Ia and exon 

Ib. The LHX3a and LHX3b protein isoforms are translated from the first methionine of 

LHX3a and LHX3b mRNAs whereas the M2-LHX3 protein isoform results from 

translation from an internal start codon within LHX3a mRNA. The LHX3a and LHX3b 

isoforms have identical LIM domains, DNA binding homeodomain, and C-terminus, but 
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different amino termini. M2-LHX3 lacks the LIM domains (Sloop et al., 2001; Sloop et 

al., 1999). Transcription of the LHX3 gene results from two TATA-less, GC-rich 

promoters upstream of exon Ia and exon Ib and involves the actions of specificity protein 

(SP) 1 and nuclear factor (NF) 1 (Yaden et al., 2005). 

LHX3 is expressed throughout the developing pituitary at mouse e9.5 (Sheng et 

al., 1997). Maximal expression of mRNA in the pituitary is detected by in situ 

hybridization at e14. Expression in the anterior lobe decreases after e18, but is 

maintained in adult pituitary. The central nervous system shows expression in the ventral 

portion of the presumptive pons, the medulla, and the spinal cord in two thin strips along 

the longitudinal axis from e9.5-P1 with highest levels of expression at e13 (Bach et al., 

1995; Seidah et al., 1994; Zhadanov et al., 1995). Similar expression patterns are seen in 

the developing human nervous system and pituitary (Sobrier et al., 2004). 

LHX3 has important roles in the development of both motoneurons and the 

pituitary. Acting with ISL1 and LHX4, LHX3 directs axons ventrally from the neural 

tube in the developing nervous system (Sharma et al., 1998). LHX3 is required for the 

proper development of the anterior and intermediate lobes of the pituitary, and is 

necessary for the specification and differentiation of four of the five hormone-secreting 

cell types: somatotropes, thyrotropes, lactotropes, and gonadotropes, (Sheng et al., 1997; 

Sheng et al., 1996). In Lhx3-null mice, which die shortly after birth, a definitive Rathke’s 

pouch forms but fails to develop further and lacks four of the five hormone-secreting cell 

types, containing only a small population of corticotropes. Rathke’s pouch appears 

normal in the Lhx3-/- mouse at e11.5, but by e12.5, expansion of the pouch is arrested. 

The posterior lobe appears normal, however the anterior lobe is missing and the 
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intermediate lobe shows a reduction in size. The Lhx3+/- heterozygous mice have 

sufficient LHX3 for normal specification of the cell lineages and pituitary development 

(Sheng et al., 1996). Studies of Lhx3 Cre/Cre mice revealed reduced expression of LHX3 in 

the pituitary, but near normal expression in the developing nervous system (Sharma et al., 

1998; Zhao et al., 2006). In contrast to the Lhx3+/- mice, the Lhx3 Cre/Cre mice displayed a 

pituitary phenotype similar to the null mouse. In these mice with reduced LHX3 action 

there is increased cell apoptosis in the ventral portion of Rathke's pouch, but similar 

levels of cell proliferation to wild type animals. Increased apoptosis is also noted in 

Pitx1/Pitx2-null mice which lack detectable LHX3 expression (Charles et al., 2005). 

Several factors including FGF8, PITX1, PITX2, SOX2, LHX4 and FOXP1 have 

all been implicated in the regulation of LHX3 gene transcription in pituitary and neural 

tissues. Expression of FGF8 in the adjacent diencephalon and Rathke’s pouch is 

responsible for activation of Lhx3 and Lhx4. Mice null for T/ebp fail to express FGF8 in 

this area and display a phenotype similar to Lhx3/Lhx4 double knockout mice (Takuma et 

al., 1998). PITX1 or PITX2 is also required for activation of Lhx3 during early pituitary 

development. Pitx1/Pitx2 double knockout mice fail to express Lhx3 and have an 

analogous phenotype to Lhx3-null mice (Charles et al., 2005). LHX3 expression is 

maintained in both Pitx1-null and Pitx2-null mice suggesting an overlapping function of 

the two proteins with expression of either sufficient to activate Lhx3 during pituitary 

development (Lanctot et al., 1999; Szeto et al., 1999). SOX2 has been shown to bind and 

activate the LHX3a promoter in vitro (Rajab et al., 2008). In vivo studies have shown 

LHX4 is required for timely activation of LHX3. In Lhx4 knockout mice, LHX3 

expression is delayed but returns to normal by e14.5 (Raetzman et al., 2002). The 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T3G-4MS9R8G-1&_user=822378&_coverDate=02%2F28%2F2007&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000044540&_version=1&_urlVersion=0&_userid=822378&md5=bc0ba371b72dd8c02efdbb797ad3a2e6&searchtype=a#bib5�
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winged-helix/ forkhead transcription factor, FOXP1, has been shown to repress LHX3 

expression in neuroendocrine cell lines and occupy the Lhx3a promoter in cell lines and 

e13.5 spinal cords in chromatin immunoprecipitation (ChIP) assays suggesting a possible 

role for FOXP1 in the negative regulation of Lhx3 gene transcription during spinal cord 

development (Morikawa et al., 2009). 

LHX3 is required for activation and expression of FOXL2, a transcription factor 

expressed from e10.5 to e12.5 in mouse with suspected roles in promoting differentiation 

in the developing pituitary as well as possible maintenance roles in adult pituitary 

function (Ellsworth et al., 2006). Other known target genes of LHX3 include αGSU, 

TSHβ, Pit1, FSHβ, GnRH-R, and PRL (Granger et al., 2006a; McGillivray et al., 2005; 

Savage et al., 2003; West et al., 2004). 

To date ten autosomal recessive mutations within the human LHX3 gene have 

been described including missense mutations, intragenic deletions, nonsense mutations, 

and a complete gene deletion. All characterized patients have combined pituitary CPHD 

lacking GH, TSH, FSH, LH, and PRL. Two recently described mutations also have 

ACTH deficiency (Rajab et al., 2008). This is similar to the Lhx3-null mice that lose all 

hormone-secreting cell types, except a small population of ACTH-secreting 

corticotropes. Not unlike the Lhx3+/- mouse, heterozygous family members are 

unaffected. The majority of LHX3 mutation patients have rigid cervical spine and limited 

neck rotation presumably related to LHX3’s role in motoneuron development. Patient 

with LHX3 mutations have variable pituitary morphology ranging from hypoplastic to 

enlarged pituitaries (Bhangoo et al., 2006; Kristrom et al., 2009; Netchine et al., 2000; 

Pfaeffle et al., 2007; Rajab et al., 2008). In addition to CPHD and limited neck rotation, 
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other neural defects have been observed including mental deficiency and deafness 

(Bhangoo et al., 2006; Kristrom et al., 2009; Rajab et al., 2008). Some patients exhibit 

CPHD plus spine and neck defects that are similar to patients with LHX3 mutations 

despite normal coding regions for the gene. One possible explanation for this phenotype 

is mutation of regulatory or enhancer elements of LHX3. Regulatory and enhancer 

mutations have been identified previously in other human diseases including 

Hirschsprung disease, familial triphalangeal thumb and preaxial polydactyly, and IgA 

nephropathy for example (Aupetit et al., 2000; Emison et al., 2005; Gurnett et al., 2007).  

LHX4 

LHX4 is expressed in the developing hindbrain, cerebral cortex, pituitary gland 

and spinal cord (Li et al., 1994; Liu et al., 2002). The highly related proteins, LHX4 and 

LHX3, share 63% amino acid identity overall and 75%-95% homology within the LIM 

and HD domains (Hunter and Rhodes, 2005; Mullen et al., 2007). At e9.5, LHX4 is 

found throughout Rathke’s pouch. In contrast to LHX3 which remains expressed in all 

areas of the developing pituitary, LHX4 is transiently expressed and is then restricted by 

e12.5 to the future anterior lobe and finally down regulated by e15.5 (Sheng et al., 1997). 

Lhx4-/- mice die shortly after birth due to defects in lung development, but similar to 

Lhx3+/- mice, Lhx4+/- mice are normal. In Lhx4-/- mice, Rathke’s pouch forms, however it 

fails to develop properly resulting in a hypoplastic pituitary. All of the hormone-secreting 

cell types are present, but are greatly reduced in number (Li et al., 1994; Sheng et al., 

1997). Although proliferation is also slightly reduced, a wave of apoptosis at e14.5 

appears to be the major cause of the hypoplasia (Raetzman et al., 2002). LHX4 with 

PROP1 plays a role in cell survival and regulation of the Lhx3 gene. Although delayed in 
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Lhx4-/- and Lhx4/Prop1 double knockout mice, LHX3 expression is normal by e14.5 

(Raetzman et al., 2002). Early in development LHX3 and LHX4 have overlapping 

functions. The presence of one functional allele of either results in the formation of a 

definitive Rathke’s pouch. Pituitaries of mice with complete loss of both LHX3 and 

LHX4 proteins do not develop past an early rudimentary stage (Sheng et al., 1997). 

LHX4 also has important roles in the development of the ventral motoneurons in the 

spinal cord (Sharma et al., 1998). Similar to the LHX3 gene, in vitro studies have shown 

that LHX4 transcription is regulated by a TATA-less promoter(s) containing recognition 

sites for SP1 (Liu et al., 2008; Yaden et al., 2006). LHX4 binds and activates several 

pituitary target genes including αGSU, GH, PRL, PIT-1, and FSHβ (Castinetti et al., 

2008; Kawamata et al., 2002; Machinis and Amselem, 2005; Sloop et al., 2001; West et 

al., 2004).  

Five heterozygous mutations in the LHX4 gene and a complete gene deletion have 

been identified that result in CPHD and other defects including hypoplasia of the anterior 

lobe, ectopic posterior pituitary, structural abnormalities of the sella turcica, chiari 

malformations in the brain, and respiratory distress syndrome. GH and TSH deficiencies 

are common to all patients, but deficiencies in LH, FSH, ACTH, and PRL are variable 

(Castinetti et al., 2008; Dateki et al., 2010; Machinis et al., 2001; Pfaeffle et al., 2008; 

Tajima et al., 2007; Tajima et al., 2009).  

1.5 Central Hypothesis and Aims 

The central hypothesis for this study was that enhancers found 3' of the LHX3 

gene are necessary for the proper expression of the protein in both the developing 

pituitary and spinal cord, and that mutations in these elements can result in CPHD.  
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This hypothesis was based on the following observations. First, a 7.9 kb region 3' of the 

LHX3 gene was found that directed expression to the pituitary and nervous system 

expression. In addition, this region was found to function independent of its position and 

the LHX3 proximal promoters indicating that enhancer elements were contained in this 

region. Furthermore, these non-coding regions have a high degree of conservation in 

multiple vertebrate species which also often correlates with regulatory function. 

Additionally, regulatory and enhancer mutations have been identified previously in other 

human diseases (Aupetit et al., 2000; Emison et al., 2005; Gurnett et al., 2007). 

Moreover, some CPHD patients with the spine and neck defects that are similar to 

patients with LHX3 mutations lack coding-region mutations suggesting an alternate 

defect in gene expression.  

The key regulatory elements necessary for in vivo expression of LHX3 were 

unknown. The overall goal of this study was to uncover the molecular mechanisms of 

LHX3 regulation and the possible role of mutations in LHX3 regulatory regions in CPHD. 

The specific aims of this study were to: characterize the temporal and spatial expression 

patterns of the identified 3' enhancer regions; identify trans-acting factors affecting LHX3 

expression; and screen candidate CPHD patients for mutations in the identified regulatory 

regions. 
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Figure 1.1. Regulation of anterior pituitary gland development by signaling proteins and 

transcription factors. Inductive signals between the ventral diencephalon (DIEN) and the 

oral ectoderm/anterior neural ridge (OE) precede formation of a rudimentary Rathke’s 

pouch (rRP, the precursor of the adenohypophysis from which the anterior pituitary 

develops). Subsequently, a definitive, closed Rathke’s pouch (dcRP) forms. Further 

differentiation and proliferation events controlled by a cascade of transcription factors 

results in development of the anterior pituitary and establishment of the hormone-

secreting cell types. The mature pituitary gland has three main components: the anterior 

pituitary lobe (AP), the intermediate pituitary (IP), and the posterior pituitary (PP). 

Adapted from (Colvin et al., 2009) 
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CHAPTER TWO 

MATERIALS AND METHODS 

 

2.1 DNA Cloning and Vector Construction 

Luciferase Reporter Constructs 

The cloning and construction of the human -3.24 kb LHX3a promoter, -1.8 kb 

LHX3b promoter, and -2.5 kb LHX3a promoter-LHX3 Exon Ia-LHX3b promoter pGL2-

basic constructs has been previously described (Yaden et al., 2006). To construct the        

-3.24 kb LHX3a promoter-LHX3 Exon Ia-LHX3b promoter pGL2-basic vector, a region 

from the NdeI restriction site in the LHX3a promoter to the end of the LHX3b promoter, 

including LHX3 Exon Ia, was cut from the -2.5 kb LHX3a promoter-LHX3 Exon Ia-

LHX3b promoter pGL2-basic vector with MluI (blunted by incubating with 2 units of 

Klenow enzyme (Roche, Indianapolis, IN) for 20 m at room temperature) and NdeI, and 

inserted into the -3.24 kb LHX3a promoter pGL2-basic vector cut with BamHI, (blunted) 

and NdeI.  

To construct the Full 3' enhancer pSC-B cloning vector, the 7.9 kb region 3' prime 

of the human LHX3 gene was amplified in two fragments from 700 ng of BAC clone 

RP11-83N9/ALI38781 using Pfu Ultra II HS DNA polymerase (Stratagene, La Jolla, 

CA) and primers (5'-cgggatccgacccagttctgacctatcc-3' (S) and 5'-gaacagtcggcactttattaa 

ccacctgtcagc-3' (AS) for fragment I; 5'-ccaggtcgaaggcggaatttagggag-3' (S) and 5'-acgcg 

tcgaccactggcgacatcatctctg-3' (AS) for fragment II). PCR parameters were 2 m at 95°C, 

(20 s at 95°C, 20 s at 64°C, 1 m 15 s at 72°C) x 25, and 3 m at 72°C. PCR products were 

sub-cloned into pSC-B vector using Strataclone blunt cloning kit (Stratagene). Vector 
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fragment II- pSC-B and insert fragment I- pSC-B were cut at an overlapping NotI site and 

ligated together to form the Full 3' enhancer pSC-B vector. Vector was treated with 

Antarctic phosphatase (New England Biolabs, Ipswich, MA) prior to ligation.  

The -3.24 kb LHX3a promoter-LHX3 Exon Ia-LHX3b promoter-luciferase-Full 3' 

pGL2-basic vector was constructed by first excising the 7.9 kb Full 3' LHX3 enhancer 

region from Full 3' pSC-B (BamHI and SalI sites) and ligating into the pGL2-basic vector 

(BamHI and SalI sites). Next the LHX3a plus LHX3b promoter region was excised from  

-3.24 kb LHX3a promoter-LHX3 Exon Ia-LHX3b promoter pGL2-basic (SpeI sites, 

blunted) and ligated into luciferase-Full 3' pGL2-basic (BglII site, blunted).  

To construct the -3.24 kb LHX3a promoter-LHX3 Exon Ia-LHX3b promoter-

luciferase-R3 pGL2-basic vector, the R3 enhancer was amplified using Pfu Ultra HF 

DNA polymerase (Stratagene) and primers (5'-cgggatccctgagactcctaggcctgacg-3' and 5'-

acgcgtcgaccactggcgacatcatctctg-3'). PCR parameters were 4 m at 95°C, (30 s at 95°C,   

30 s at 65°C, 30s at 72°C) x 30, and 7 m at 72°C. PCR products were sub-cloned into 

pSC-B vector using Strataclone blunt cloning kit (Stratagene). The R3 pituitary enhancer 

was excised from R3-pSC-B (BamHI and SalI sites) and ligated into -3.24 kb LHX3a 

promoter-LHX3 Exon Ia-LHX3b promoter pGL2-basic vector (BamHI and SalI sites).  

The minimal -36 bp rat prolactin promoter was excised from the 3xPRDQ9 -36 

PRL luciferase plasmid (described in Sloop et al., 2000) with BglII and HindIII and 

ligated into pGL4.1 (Promega, Madison, WI) upstream of the luciferase gene (BamHI 

and HindIII sites) to build the -36PRL pGL4.1 vector. The R3 pituitary enhancer was 

excised from R3 pSC-B (BamHI and SalI sites) and ligated into -36PRL pGL2-basic 

(BamHI and SalI sites) to construct the -36PRL-luciferase-R3 pGL4.1 vector. 
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LHX3 Promoter pWHERE Transgenes 

The -3.24 kb LHX3a promoter pWHERE transgene was constructed by inserting 

the LHX3a promoter into the multi-cloning site (MCS) of the pWHERE vector 

(Invivogen, San Diego, CA). This vector contains a MCS upstream of a beta 

galactosidase transcription unit with a nuclear localization signal followed by 

untranslated region (UTR) and a polyadenylation signal from human EF1 alpha gene and 

flanked by murine H19 insulator regions. The LHX3a promoter was cut from the -3.24 kb 

LHX3a promoter pGL2-basic construct (SpeI and BglII) and inserted into the pWHERE 

vector (AvrII and BamHI sites). 

The -1.8 kb LHX3b promoter pWHERE transgene was constructed by inserting 

the LHX3b promoter into the MCS of the pWHERE vector (Invivogen). The LHX3b 

promoter was cut from the -1.8 kb LHX3b promoter pGL2-basic construct (SpeI and 

HindIII, blunted, sites) and ligated into the pWHERE vector (Invivogen) (AvrII and SmaI 

sites). The -3.24 kb LHX3a promoter-LHX3 Exon Ia-LHX3b promoter modified 

pWHERE transgene was constructed in two steps. First, the pWHERE vector was 

modified to remove an additional PstI site in the MCS, leaving only the PstI site 

immediately after the poly-A tail. The pWHERE vector was digested with SdaI (cuts at 

the PstI site in the MCS) then blunted and re-ligated to remove the SdaI and PstI sites. 

Second, the LHX3 promoter region was excised from the -3.24 kb LHX3a promoter-

LHX3 Exon Ia-LHX3b promoter pGL2-basic construct (BamHI sites) and ligated into the 

modified pWHERE vector (AvrII site). 

To build the -3.24 kb LHX3a promoter-LHX3 Exon Ia-LHX3b promoter-nLacZ-

Full 3' modified pWHERE transgene (Figure 2.1), first, the Full 3' enhancer was excised 



23 
 

from Full 3' pSC-B (BamHI and SalI sites, blunted) and ligated into the modified 

pWHERE vector (PstI site, blunted). Next, the LHX3 promoter region was excised from 

the -3.24 kb LHX3a promoter-LHX3 Exon Ia-LHX3b promoter pGL2-basic construct 

(SpeI sites, blunted) and ligated into the nLacZ- Full 3' modified pWHERE vector 

(BamHI site, blunted). 

To build the -3.24 kb LHX3a promoter-LHX3 Exon Ia-LHX3b promoter -LacZ- 

Full 3' + Far modified pWHERE, first the Far enhancer was amplified using Pfu Ultra II 

HS DNA polymerase (Stratagene) and primers (5'-gacagcagtgaagatttgtgac-3' and 5'-gag 

tgactgaaacagctccc-3'). PCR parameters were 2 m at 95°C, (20 s at 95°C, 20 s at 57°C, 15 

s at 72°C) x 30, and 3 m at 72°C. PCR products were sub-cloned into pSC-B vector using 

Strataclone blunt cloning kit (Stratagene). Next, the Far enhancer was excised (EcoRV 

and KpnI sites) from pSC-B and ligated into the Full 3' enhancer pSC-B (SmaI and KpnI 

sites). The combined enhancer region (Full 3' + Far) was excised (EcoRV and BAMHI, 

blunted, sites) and ligated into modified pWHERE vector (PstI site, blunted). Lastly, the 

LHX3 promoter region was excised from the -3.24 kb LHX3a promoter-LHX3 Exon Ia-

LHX3b promoter pGL2-basic construct (SpeI sites, blunted) and ligated into the MCS of 

nLacZ- Full 3' + Far modified pWHERE (BamHI site, blunted). 

Human LHX3 Enhancer HSP68 Promoter pSC-B Transgenes 

The HSP68-Hand2-LacZ pSK-Bluescript (a kind gift from Dr. Simon Conway, 

Indiana University School of Medicine, Indianapolis, IN) was first modified to remove 

the Hand2 control enhancer by digestion with XhoI and HindIII followed by gel 

purification and re-ligation. Next, HSP68-LacZ was excised from HSP68-LacZ pSK-

Bluescript (KpnI and HindIII sites, blunted) and ligated into the Full 3' enhancer pSC-B 
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(EcoRV site) to construct the Full 3'-HSP68-LacZ pSC-B vector. HSP68-LacZ (KpnI and 

HindIII sites, blunted) was ligated into Full 3' pSC-B (BsaBI and EcoRV sites) to 

construct the UTR HSP68-LacZ pSC-B vector. HSP68-LacZ (KpnI and HindIII sites, 

blunted) was ligated into Full 3' pSC-B (MluI, blunted, and EcoRV sites) to construct the 

UTR R1 HSP68-LacZ pSC-B vector. HSP68-LacZ (KpnI and HindIII sites, blunted) was 

ligated into Full 3' pSC-B (NcoI (blunted) and EcoRV sites) to construct the UTR R1 R2 

HSP68-LacZ pSC-B vector. The R2 enhancer region was isolated from fragment II of the 

Full 3' enhancer by digestion with NaeI and PmlI and ligated into the cloning vector pSC-

B (SmaI and EcoRV sites). HSP68-LacZ (KpnI and HindIII sites, blunted) was ligated 

into R2 pSC-B (XhoI site, blunted) to construct R2 HSP68-LacZ pSC-B plasmid. HSP68-

LacZ (KpnI and HindIII sites, blunted) was ligated into Far 3' pSC-B (BamHI and HindIII 

sites, blunted) to construct the Far 3' HSP68-LacZ pSC-B vector. 

Enhancer HSP68 pWHERE Transgenes 

The Full 3' enhancer was excised from Full 3' enhancer pSC-B (BamHI and SalI 

sites) and ligated into the MCS of the modified pWHERE vector (BamHI and SalI sites). 

Next, the HSP68 promoter was excised (KpnI and NcoI sites, blunted) and ligated into 

Full 3' pWHERE (SalI site, blunted) to construct the Full 3'-HSP68 pWHERE (Figure 

2.2). The UTR HSP68 pWHERE, UTR R1 HSP68 pWHERE, UTRR1R2 HSP68 

pWHERE, and R2 HSP68 pWHERE transgenes were constructed by excising the 

respective enhancer-HSP68 region from the pSC-B vector with BamHI and NcoI and 

ligating into the MCS of the modified pWHERE plasmid digested with the same 

enzymes. The Far 3'-HSP68 pWHERE was constructed by excising the Far 3' enhancer-

HSP68 from the pSC-B vector with NotI (blunted) and NcoI and ligating into the MCS of 
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the modified pWHERE plasmid digested with SmaI and NcoI. To construct the R3-

HSP68 pWHERE transgene (Figure 2.3), the R3 enhancer was excised from the pSC-B 

vector with BamHI and SalI and ligated into R2-HSP68 pWHERE digested with BamHI 

and SalI, thereby removing the R2 enhancer and replacing it with the R3 enhancer. The 

R3 enhancer was excised (SalI sites) and ligated 3' of the R2 region into the R2-HSP68 

pWHERE (SalI site) to construct the R2R3-HSP68 pWHERE transgene. The Delta R2-

HSP68 pWHERE transgene was constructed by amplifying a region from directly 

downstream of the R2 enhancer to the 3' end of the Full enhancer using Pfu Ultra HF 

DNA polymerase (Stratagene) and primers (5'-cgggatccctgagactcctaggcctgacg-3' and 5'-

acgcgtcgaccactggcgacatcatctctg-3'). The primers added MluI and SalI sites to the 5' and 3' 

end respectively. PCR parameters were 4 m at 95°C, (30 s at 95°C, 30 s at 65°C, 30 s at 

72°C) x 30, and 7 m at 72°C. PCR products were sub-cloned into pSC-B vector using 

Strataclone blunt cloning kit (Stratagene). The insert was excised (MluI and SalI sites) 

and ligated into the Full 3' pWHERE (MluI and SalI sites) to construct Delta R2 

pWHERE. The MluI site is 428 bp upstream of R2 and SalI is at the 3' end of the Full 

enhancer. HSP68 (KpnI and NcoI sites, blunted) was then ligated into DeltaR2 pWHERE 

(SalI, blunted).  

To construct the Core R3-HSP68 pWHERE transgene, the 180 bp Core R3 

enhancer region was amplified from the Full 3' enhancer using Pfu Ultra HF DNA 

polymerase (Stratagene) and primers (5'-cgggatcccaggcctctgctagggtggg-3' and 5'-

acgcgtcgacatcccaatcccaccgccatc-3') and the PCR parameters 4 m at 95°C, (30 s at 95°C, 

30 s at 65°C, 30 s at 72°C) x 30, and 7 m at 72°C. The primers added BamHI and SalI 

sites to the 5' and 3' end respectively. PCR products were sub-cloned into pSC-B vector 
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using Strataclone blunt cloning kit (Stratagene). The insert was excised (BamHI and SalI 

sites) and ligated into R3-HSP68 pWHERE (BamHI and SalI sites) thereby removing the 

R3 enhancer and replacing it with the Core R3 enhancer region. 

The Core R3 Fragment I-HSP68 pWHERE was constructed as described for the 

Core R3-HSP68 pWHERE transgene. Region was amplified with primers (5'-cgggatccca 

gtaatcctcggaatg-3' and 5'-tggtcgacgcgtcattccgaggattac-3'). The Core R3 Fragment II-

HSP68 pWHERE was constructed as described for the Core R3-HSP68 pWHERE 

transgene. Region was amplified with primers (5'-cgggatcccagtaatcctcggaatg-3' and  

5'-acgcgtcgacgaggagagtttgcg-3'). The Core R3 Fragment III-HSP68 pWHERE was 

constructed as described for the Core R3-HSP68 pWHERE transgene. Region was 

amplified with primers (5'-cgggatccactctcctcattaaac-3' and 5'-acgcgtcgacatcccaatccc 

accgccatc-3'). 

R3 Binding Site Mutation Transgenes 

Site-directed mutagenesis using the QuikChange II system (Stratagene) was used 

to mutate the R3 pSC-B construct. Oligonucleotides for mutagenesis were 5'-gctcct 

ctccctggcaaacgagtgggtcagagctcagtaatcctcg-3', 5'-cgaggattactgagctctgacccactcgtttg 

ccagggagaggagc-3' (“SOX” mutation); 5'-gctttgttcagagctcagtcggcctcggaatgacaagg-3', 5'-

ccttgtcattccgaggccgactgagctctgaacaaagc-3' (TAAT1 site mutation); 5'-cggaatgacaagg 

tttaaaatttcggtagcaggctcctcttacgc-3', 5'-gcgtaagaggagcctgctaccgaaattttaaaccttgtcattccg-3' 

(TAAT/ATTA2 mutation); 5'-ggtttaaaatttaattagcaggctcctcggacgggtactctcctcattaaactaagtgt 

ccc-3', 5'-gggacacttagtttaatgaggagagtacccgtccgaggagcctgctaattaaattttaaacc-3' (“C/EBP” 

mutation); 5'-ggctcctcttacgcaaactctcctccggcaactaagtgtcccattagttaaagt-3', 5'-actttaactaat 

gggacacttagttgccggaggagagtttgcgtaagaggagcc-3' (ATTA3 mutation); 5'-ctctcctcattaaac 
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taagtgtccccggcgttaaagtgaaacttgatggcggtg-3', 5'-caccgccatcaagtttcactttaacgccggggacactta 

gtttaatgaggagag-3' (ATTA4 mutation) (Site mutations are bold underlined). The mutated 

R3 region was excised from the pSC-B vector and ligated into HSP68 pWHERE (BamHI 

and SalI sites). R3 (ATTA3 Mutation and ATTA4 Mutation)-HSP68 pWHERE was 

generated by site-directed mutagenesis of R3 (ATTA3)-pSC-B using the ATTA4 

mutation oligonucleotides and ligation into HSP68 pWHERE as described above. 

Human Patient Sequencing 

The R3 enhancer region was amplified from purified DNA of candidate patients 

using Pfu Ultra II HS DNA polymerase (Stratagene) and primers (5'-ctgagactcctaggcctga 

cg-3' and 5'-ctcactggcgacatcatctct-3') with the parameters; 2 m at 95°C, (30 s at 95°C,  

30 s at 56°C, 1 m at 72°C) x 30, 10 m at 72°C. To sequence the PCR products in bulk, 

20% of the total PCR product was digested with 0.5 U of exonuclease I (USB Corp., 

Cleveland, OH) for 60 m followed by heat inactivated for 15 m at 80°C. The PCR 

products were then purified by ethanol precipitation and resuspended in nuclease free 

water for DNA sequencing. 

DNA Sequencing 

DNA sequencing was performed with a Perkin Elmer DNA sequencer 

(Biochemistry Biotechnology Facility at the Indiana School of Medicine). The DNA 

templates were submitted using the recommended guidelines from the sequencing 

facility. The sequence alignment and analyses were done with the DNASIS (Hitachi 

Software Engineering, San Francisco, CA) software. 
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In Vitro Transcription/Translation 

2.2 Protein Analyses 

Human(h)LHX3, hLHX4, rat(r)ISL1, hPITX1 and hPITX2 proteins were 

synthesized in vitro from 0.5-1.0 μg expression vector substrates (LHX3 and LHX4 

expression vectors, described in Pfaeffle et al. 2007 and 2008; rISL1 expression vector, a 

kind gift from Dr. Samuel Pfaff, Salk Institute, La Jolla, CA ; hPITX1 a kind gift from 

Dr. Marie-Hélène Quentien, Département de Neuroendocrinologie and 

Neuroimmunologie, Université de la Méditerranée; hPITX2 a kind gift from Dr. Micheal 

Walter, Department of Medical Genetics, University of Alberta) using T7 RNA 

polymerase, TNT rabbit reticulocyte lysates (Promega, Madison, WI), and cold or 35S-

cysteine (PerkinElmer, Waltham, MA). Parallel negative controls were programmed with 

empty vector. 35S labeled proteins were separated in 12% SDS-PAGE gels, treated with 

Amplify fluorography reagent (GE Healthcare Biosciences, Piscataway, NJ) and 

visualized by autoradiography or using a Fujifilm FLA-5100 phosphorimager to confirm 

their correct size. 

Electrophoretic Mobility Shift Assays (EMSAs) 

EMSAs were performed using in vitro translated (see above) non-radiolabeled 

proteins. For LHX3, LHX4 and rISL1 EMSAs, equivalent amounts (7 μl) of TnT proteins 

and empty vector programmed cell lysates were incubated with 12 μl reaction mixture 

(5x reaction buffer [60% glycerol, 100 mM Hepes pH 7.9, 20 mM Tris-Cl pH 8.0, 300 

mM KCl, and 3 mM EDTA], 1 μg/ml dIdC, 0.1 μg/μl salmon sperm DNA, 10 μg/μl 

BSA, and 100 mM DTT) to a final volume of 19 μl. Reactions were pre-blocked on ice 

for 10 m and then combined with 1 μl (40,000 cpm) of radiolabeled DNA probes and 
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incubated at 25°C for 30-45 m. Reaction complexes were resolved by gel electrophoresis 

in 5% polyacrylamide.  

PITX1 and PITX2 EMSA experiments were performed using conditions modified 

from Amendt et al., 1999. Briefly, 10 μl of in vitro-translated protein lysate and 32P 

labeled probes were incubated in 20 mM Hepes pH 7.5, 5% glycerol, 50 mM NaCl,  

1 mM EDTA, 1 mM dithiothreitol, 1.0 μg of poly(dI·dC) on ice for 30 m. The samples 

were electrophoresed for 2 ½ h at 250 V in 8% polyacrylamide gel with 0.25× TBE at 

4 °C following pre-electrophoresis of the gels for 15 m at 200 V.  

All EMSA were dried onto Whatman 3mm paper and visualized by 

autoradiography or using a Fujifilm FLA-5100 phosphorimager. DNA probe sequences 

were as follows; the LHX3 consensus binding site (LBC): 5'-gcgatcccagaaaattaattaattgtaa 

gcg-3'and 5'-cgcttacaattaattaattttctgggatcgc-3', the A3/4 ISL1 binding site in the rat 

insulin promoter: 5'-ccttgttaataatctaattacccta-3' and 5'-tagggtaattagattattaacaagg-3', the 

tandem bicoid element, Bcd2x5n, previously shown to bind PITX proteins (Saadi et al., 

2003): 5'-atctaatcccgtcgtaatcgcat-3' and 5'-atgcgattacgacgggattagat-3', R3 enhancer site 

TAAT1: 5'-gttcagagctcagtaatcctcggaatg-3'and 5'-cattccgaggattactgagctctgaac-3', R3 

enhancer site TAAT1 mutated: (Mutations are bold underlined.) 5'-gttcagagctcagtcggcctc 

ggaatg-3'and 5'-cattccgaggccgactgagctctgaac-3', R3 enhancer site TAAT/ATTA2: 5'-

aaggtttaaaatttaattagcaggctcc-3'and 5'-ggagcctgctaattaaattttaaacctt-3', R3 enhancer site 

TAAT/ATTA2 mutated: 5'-aaggtttaaaatttcggtagcaggctcc-3'and 5'-ggagcctgctaccgaaattttaa 

acctt-3', R3 enhancer site ATTA3 and ATTA4: 5'-ctcattaaactaagtgtcccattagtta-3' and 5'-

taactaatgggacacttagtttaatgag-3', R3 enhancer site ATTA3 mutated: 5'-ctcgccgaactaagtgtcc 
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cattagtta-3' and 5'-taactaatgggacacttagttcggcgag-3', R3 enhancer site ATTA4 mutated: 5'-

ctcattaaactaagtgtcccgccggtta-3'and 5'-taaccggcgggacacttagtttaatgag-3', or R3 enhancer 

site ATTA3 and ATTA4 mutated: 5'-ctcgccgaactaagtgtcccgccggtta-3' and 5'-taaccggcggg 

acacttagttcggcgag-3'. 

Chromatin Immunoprecipitation (ChIP) 

Chromatin cross-linking and immunoprecipitation (ChIP) analyses were 

performed on αT3 mouse pituitary cells with the EZ Chip™ Chromatin 

Immunoprecipitation Kit (Millipore, Billerica, MA) following the manufacturers 

recommended protocol. Protein DNA chromatin complexes were fragmented by 

sonication with conditions optimized to obtain the majority DNA fragments within the 

range of 200 to 1000 bp. One million cells were used for each immunoprecipitation. 

Precleared protein DNA chromatin complexes were incubated overnight at 4°C with 

either 5 µg of PITX1 rabbit polyclonal antibody (Abnova Corporation, Walnut, CA) or a 

cocktail of ISL1 monoclonal antibodies (3 µg each) used previously by Du et al., 2009 

for ChIP assay (Developmental Studies Hybridoma Bank 39.4D5, 39.3F7, 40.3A4, 

40.2D6). Controls were incubated with normal mouse immunoglobulin (Santa Cruz 

Biotechnology, Santa Cruz, CA) for ISL1 experiments or normal rabbit immunoglobulin 

(Sigma, St. Louis, MO) for PITX1 experiments. Quantitative real-time PCR was 

performed on 5 µl of the immunoprecipitated and input DNA using SYBR Green PCR 

master mix (Applied Biosystems, Carlsbad, CA) and an ABI Prism 7900 instrument. The 

2–ΔΔCt, where ΔΔCt = ΔCt,input - ΔCt,sample, was calculated for each sample. Relative 

enrichment was calculated as the fold difference above the 2–ΔΔCt for the control mouse or 
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rabbit normal immunoglobulin samples. Oligonucleotides used for quantitative PCR 

were; 5'-agccacccctcccaccatca-3' and 5'-ggagagtttgcataagagaaacctgct-3', or 5'-gcaggtttctc 

ttatgcaaactctcct-3' and 5'-tagctccaccccacccccac-3'. 

 2.3 Cell Culture and Transient Transfections 

HEK 293T cells (1.5 x 105 cells/35 mm dish), mouse pituitary gonadotrope αT3 

cells (5.0 x 105 cells/35 mm dish), and mouse pituitary gonadotrope LβT2 cells (2.5 x 105 

cells/35 mm dish) were cultured in DMEM with 10% FBS (Irvine Scientific, Santa Ana, 

CA), 100 U/ml penicillin, and 100 μg/ml streptomycin (Invitrogen). HEK 293T cells 

were transiently transfected using the CalPhos™ Mammalian Transfection Kit 

(Clontech). LβT2 and αT3 cells were transiently transfected using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA) with 0.5-1.0 μg of reporter gene plasmid and 0.1-1.0 μg of 

expression vector. Parallel control samples received equivalent amounts of empty 

expression vector DNA. All luciferase assays were performed in triplicate. Forty-eight 

hours following transfection, cells were lysed in 25 mM Tris pH 7.8, 2 mM DTT, 1% 

Triton X-100, 2 mM EDTA, and 10% glycerol assay buffer and luciferase activity was 

measured using a Beckman Coulter LD400 plate reader/luminometer (Beckman Coulter, 

Fullerton, CA) as described (Sloop et al., 2001). Following determination of total protein 

levels by the Bradford method (BioRad), luciferase activities were normalized to protein 

concentration. Experiments were repeated a minimum of three times. 
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2.4 Generation, Genotyping, and Breeding of Transgenic Mice 

Transgenic Mouse Generation 

One hundred micrograms of transgene plasmid DNA was linearized with Pac I 

digestion. Digest was submitted either to the Purdue Transgenic Mouse Core Facility 

(West Lafayette, IN) or the Indiana University Cancer Center Transgenic and Knock-out 

Mouse Core (Indianapolis, IN) for gel purification and microinjection. The linearized 

transgenes were microinjected into F2 zygotes from FVB/N or C3H parents at a 

concentration of approximately 2-3 ng/μl. After microinjection, two-cell stage embryos 

were transferred to 0.5 days post coitum (dpc) pseudopregnant females. Founder 

transgenic mice were harvested at embryonic day 12.5 (e12.5) or e14.5 for transient 

transgenic studies or used for breeding as adults for the generation of stable transgenic 

lines. Harvested embryos were designated e0.5 the day after microinjection of the 

transgene. 

Breeding and Housing of Transgenic Mice 

Transgenic founder animals and their progeny were bred to C3H mice (Harlan 

Laboratories, Indianapolis, IN) to generate heterozygotes. The morning after copulation, 

indicated by the presence of a vaginal plug, was considered embryonic day 0.5 (e0.5) and 

the day of birth was postnatal day 1 (P1). 

Mice were housed in a specific pathogen-free environment under controlled 

conditions of temperature and light and were provided free access to tap water and 

commercial mouse chow. The Indiana University Committee on Use and Care of 

Animals approved all procedures done using the mice, and all experiments were 
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performed in agreement with the principles and procedures outlined in the National 

Institutes of Health Guidelines for the Care and Use of Experimental Animals. 

Genotyping of Transgenic Mice 

Genomic DNA was purified from mouse tail snips taken between 14 and 21 days 

of age using the genomic DNA solution set kit (Gerard Biotech, Oxford, OH) according 

to manufacturer’s instructions. Genotyping for transgenic mouse lines was performed 

using a multiplex PCR amplifying the transgenic region and wild type control region with 

the following oligonucleotides: 5'-aggactgggtggcttccaactcccagacac-3', 5'-agcttctcatt 

gctgcgcgccaggttcagg-3' (wild type control, Rapsn gene) and 5'-tcatcagcagaaagacctacag-3', 

5'-tcagaagggaacacataaggg-3' (pWHERE modified beta galactosidase gene). Expected 

amplicon sizes were 591 bp and 252 bp respectively. PCR parameters used for 

genotyping experiments were 2 m at 94°C, (30 s at 94°C, 30 s at 56 °C, 30 s at 72°C) x 

30, and 7 m at 72°C. 

2.5 Histology and Immunohistochemistry 

Fixation and Sectioning 

Embryos for immunohistochemistry were fixed on ice in 4% paraformaldehyde in 

1X PBS for 1 to 24 h. Adult pituitaries and embryos used for beta galactosidase staining 

were fixed on ice in 2% paraformaldehyde and 0.2% glutaraldehyde in 1X PBS (pH 7.2) 

for 1 h. All harvested tissues were washed three times in 1X PBS (pH 7.2; quick rinse, 1 

h, and 30 m) and placed in 20% sucrose overnight. Next tissues and embryos were 

embedded in O.C.T. compound (Sakura Finetek, Torrence, CA) on dry ice and stored at   

-80°C until cryosectioned at a thickness of 7 µm. 

  



34 
 

Whole Mount Beta Galactosidase Activity Staining 

After fixation and washing as described above, embryos were incubated at room 

temperature overnight with gentle agitation in X-gal solution (in 1X PBS (pH 7.2),        

35 mM potassium ferrocyanide, 35 mM potassium ferricyanide, 2 mM MgCl2, 0.2% each 

of Triton X-100, Nonidet P-40 and Tween 20, and 1 mg/ml X-gal diluted in 

dimethylformamide). Following staining, specimens were washed at room temperature 

overnight with gentle agitation in 1X PBS (pH 7.2). After washing, embryos were imaged 

for surface staining. To clear, embryos were dehydrated in 70% (30 m), 95% (30 m), and 

100% ethanol (30 m twice or overnight) and then incubated with gentle agitation in 100% 

methyl salicylate at room temperature for 1 h. Imaging was done immediately following 

clearing. Wild type embryos in litters served as negative controls. After whole mount 

staining, e12.5 embryos were paraffin embedded and sectioned at a thickness of 6 µm. 

Sections were deparaffinized, dehydrated in ethanol washes (95% then 100%; 1 m two 

times) and then eosin counterstained (1:1 mixture of 100% ethanol and eosin stain; 30 s) 

and then washed in 100% ethanol and allowed to dry. After drying, slides were cover-

slipped using permamount (Fisher Scientific, Pittsburg, PA). 

Cryosection Beta Galactosidase Activity Staining 

Cryosections were air dried and fixed for 10 m with 0.5% glutaraldehyde in 1X 

PBS (pH 7.2) then washed three times in 1X PBS (pH 7.2; quick rinse, 10 m, and 5 m) 

followed by staining in X-gal solution (described above) at room temperature in the dark 

overnight with gentle agitation. Following staining, the slides were washed overnight in 

1X PBS (pH 7.2). After washing, slides were dehydrated in ethanol washes (95% then 

100%; 1 m two times) and then eosin counterstained (1:1 mixture of ethanol and eosin 
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stain; 1 time 30 s) and then washed in 100% ethanol and allowed to dry. After drying, 

slides were cover-slipped using permamount (Fisher Scientific, Pittsburg, PA). 

Immunohistochemistry 

Cryosections were rehydrated in 1X PBS (pH 7.2) and antigen unmasked by 

citrate boil [(10 m boil in 10 mM citric acid (pH 6.0)] before immunostaining. Double 

immunohistochemistry was performed using polyclonal antibodies against E. coli β-

galactosidase (1:500 Fluor.) (MP Biomedicals, Solon, OH) and mouse LIM-3 (1:100 

Fluor.) (Chemicon, Temecula, CA) or mouse LIM-3 (1:100 Fluor.) (Chemicon, 

Temecula, CA) and human ACTH (1:500 Fluor.) (AFP-39032082), or rat αGSU (1:100 

Fluor.) (AFP-66P9986), or rat GH (1:500 Fluor.) (AFP-5672099), or rat LHβ (1:400 

Fluor.) (AFP-571292393), or rat TSHβ (1:500 Fluor.) (AFP-1274789) (National 

Hormone and Pituitary Program, Torrance, CA). To determine the co-localization pattern 

of enhancer directed transgenes and the hormone secreting cell types, cryosections were 

first stained for β-galactosidase activity and then immunostained with the antibodies 

against human ACTH (1:1000 DAB) (AFP-39032082), or rat αGSU (1:500 DAB) (AFP-

66P9986), or rat GH (1:1000 DAB) (AFP-5672099), or rat LHβ (1:800 DAB) (AFP-

571292393), or rat TSHβ (1:1000 DAB) (AFP-1274789) (National Hormone and 

Pituitary Program). Bound biotinylated secondary antibodies were detected using avidin 

and biotinylated peroxidase or fluorescent avidin only (Vectastain rabbit and M.O.M. 

kits; Vector Laboratories, Burlingame, CA). Diaminobenzidine (DAB) (Sigma, St. Louis, 

MO) was used as the chromogen for some immunostaining reactions. Normal serum was 

substituted for primary antibody in parallel negative control experiments. 
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2.6 Microscopy 

Light and fluorescent images of embryo and pituitary sections were obtained with 

a Nikon Eclipse 90i microscope (Nikon Instruments, Inc., Melville, NY) with DAPI, 

FITC, and TRITC filter cubes. Canvas (ACD Systems of America, Inc., Miami, FL) and 

NIS Elements (Nikon Instruments, Inc.) were used to process the images. Light images of 

whole embryos and adult pituitaries were obtained using a Leica MZ 6 microscope and a 

CCD camera (PL A662, PixeLINK, Ottawa, Ontario, Canada) with PixeLINK Capture 

software.  

2.7 Bioinformatics Analyses 

NCBI (www.ncbi.nlm.nih.gov/sites/genome) and the Ensembl genome browser 

(www.ensembl.org) were used to retrieve the human LHX3 gene and enhancer sequences. 

The ECR, UCSC, and VISTA Genome browsers were used to identify conserved non-

coding elements (CNEs) between 10 kb upstream of the transcription start site and 10 kb 

downstream of the stop codon of the human LHX3 gene (Couronne et al., 2003; Kent et 

al., 2002; Ovcharenko et al., 2004). Putative transcription factor binding sites were 

predicted with TRANSFAC and rVISTA tools (Loots et al., 2002; Matys et al., 2003). 

2.8 General Molecular Techniques  

Ligations and Transformations 

DNA fragments to be ligated were visualized for size and concentration by 

agarose gel electrophoresis. DNA fragments were joined using 0.5 μl T4 DNA ligase 

(Roche) in a total volume of 10 μl buffered solution. Typically, ligation reactions are 

allowed to proceed overnight at 16°C. Five μl of the ligation reaction or 2-5 ng of 

plasmid preparation were transformed into bacterial cells for preparation of clones. 

http://www.ncbi.nlm.nih.gov/sites/genome�
http://www.ensembl.org/�
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Plasmid DNA was added to 50 μl of chemically competent E. coli DH5α cells 

(Invitrogen) on ice. This mixture was heat shocked at 42°C for 45 s and placed on ice 

again for a minimum of 2 m. The addition of 800 μl of LB broth supplemented with 0.2% 

glucose and 10 mM MgCl2 preceded incubation at 37°C for 45-60 m with shaking at 180 

rpm. Transformed cells were plated on LB agar plates containing the appropriate 

selective antibiotic. 

Small Scale Alkaline Lysis Plasmid Preparation 

E. coli DH5α transformants were incubated at 37°C with shaking overnight in LB 

broth with appropriate antibiotics. To pellet cells, 1.5 ml of liquid culture was centrifuged 

at 16,000 x g for 1 m. The supernatant was aspirated and the pellet was resuspended in 

100 µl hypertonic solution 1 (50 mM Tris-HCl, pH 8.0, 0.9% glucose, 10 mM EDTA) 

followed by incubation on ice for 5 m. Cells were lysed by the addition of 200 µl solution 

2 (0.2 M NaOH, 0.5% SDS), followed by gentle mixing and incubation on ice for 5 m. 

One hundred seventy five μl solution 3 (3 M KOAc, 11.5% (v/v) glacial acetic acid) was 

added followed by an additional incubation on ice for 5 m. The solution was centrifuged 

at 16,000 x g for 10 m followed by the addition of 300 µl of phenol/chloroform (1:1) 

solution and centrifugation at 16,000 x g for 10 m. The upper aqueous phase was 

removed and 1 volume of room temperature isopropanol was added to precipitate nucleic 

acids. The sample was centrifuged at 16,000 x g for 10 m and the pellet washed with 75% 

ethanol. The pellet was dried at 37°C for 5 m and resuspended in 40 µl TER (100 μg/ml 

RNaseA in 1X TE buffer [10 mM Tris-Cl, pH 7.4, 1 mM EDTA]). 
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One to two microliters of the plasmid preparations were digested with restriction 

endonucleases using the recommended buffer conditions (New England Biolabs). 

Restriction digests were separated on agarose/1X Tris-borate gels to select properly 

constructed plasmids. 

Gel Purification of DNA Fragments 

DNA fragments to be gel purified were separated on 0.7%, 1.0%, or 1.5% 

agarose/Tris-borate gels. Gel slices containing the fragments of interest were excised as 

quickly as possible using razor blades and long wavelength ultraviolet light. Gel 

purification was performed with regular Qiaquick or MinElute gel extraction columns 

(Qiagen, Valencia, CA) according to the manufacturer’s protocol. Elution from the 

column was performed with either 10 μl (MinElute) or 30 μl (Qiaquick) of the supplied 

buffer. 
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Figure 2.1. LHX3a promoter-LHX3 exon Ia-LHX3b promoter-nLACZ- Full 3' modified 

pWHERE transgene. The -3.24 kb LHX3a promoter-LHX3 Exon Ia-LHX3b promoter 

region and the full 3' enhancer region were inserted into the modified pWHERE vector as 

shown. Beta galactosidase transcription unit with a nuclear localization signal (nLACZ); 

polyadenylation signal from human EF1 alpha gene (EF1pAn); murine H19 insulator 

regions (H19 ins). 
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Figure 2.2. Full 3'-HSP68 nLACZ pWHERE transgene. The full 3' enhancer region and 

the heat shock protein 68 (HSP68) promoter were inserted into the modified pWHERE 

vector as shown. Beta galactosidase transcription unit with a nuclear localization signal 

(nLACZ); polyadenylation signal from human EF1 alpha gene (EF1pAn); murine H19 

insulator regions (H19 ins). 
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Figure 2.3. R3-HSP68 nLACZ pWHERE transgene. The R3 enhancer region and the heat 

shock protein 68 (HSP68) promoter were inserted into the modified pWHERE vector as 

shown. Beta galactosidase transcription unit with a nuclear localization signal (nLACZ); 

polyadenylation signal from human EF1 alpha gene (EF1pAn); murine H19 insulator 

regions (H19 ins). 
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CHAPTER THREE 

IN VIVO ANALYSIS OF HUMAN LHX3 GENE REGULATION  

 

3.1 Results 

Conserved Distal Elements Downstream of the Human LHX3 Gene 

Direct Pituitary and Nervous System Expression 

Our lab previously characterized two human LHX3a and LHX3b promoters with 

basal activity in vitro. To test the function of the promoters in vivo, I used a beta 

galactosidase reporter gene mouse model. Transgenes were constructed by placing the 

promoters in a vector containing a beta galactosidase reporter gene with a nuclear 

localization signal followed by an untranslated region (UTR) and a polyadenylation 

signal from the human EF1 alpha gene flanked by murine H19 insulator regions. H19 

insulators have been shown to help reduce inappropriate repression or activation of gene 

expression caused by the site of integration of the transgene (Touw et al., 2007). 

Transient transgenics were analyzed at e14.5, a time point when mouse Lhx3 gene 

expression is high in both the developing pituitary and spinal cord (Bach et al., 1995; 

Seidah et al., 1994; Zhadanov et al., 1995). Neither promoter alone was able to drive 

expression in any tissue including the pituitary and spinal cord (Figure 3.1 B, C; I and II). 

To test the hypothesis that interactions between the two upstream promoter regions were 

required to guide gene expression in vivo, I also examined the activity of the combined 

promoter regions in the mouse model (Figure 3.1 B; III). This transgene was also unable 

to direct reporter gene expression (Figure 3.1 C; III). A minimum of six independent 

founders were analyzed for each promoter transgene (Figure 3.1 C; I, II, and III). 
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Together, these results indicate that regions outside of the basal promoters are required to 

direct LHX3 gene expression in vivo.  

Conserved non-coding elements (CNE) are associated with gene enhancer activity 

in multiple tissues including neural tissues and the developing heart (Blow et al., 2010; 

Visel et al., 2007). To search for regulatory regions, I performed bioinformatic searches 

using the ECR browser of sequences ± 10 kb surrounding the human LHX3 gene and 

discovered multiple CNEs within a 7.9 kb region directly 3' of the gene (Bray et al., 

2003; Couronne et al., 2003). The CNEs in the 3' region show ≥ 70% conservation 

between humans and multiple other vertebrates (Figure 3.1 A). In order to examine the 

function of these CNEs in vivo, I next tested the combined human promoter region plus 

the 3' 7.9 kb region in the transgenic mouse model. Unlike the promoter constructs, this 

construct was able to drive tissue-specific expression in the developing pituitary and 

spinal cord at e14.5 (Figure 3.1 C; IV). This result indicates that the 3' region contains 

one or more enhancers required for spatial and temporal expression of the LHX3 gene. 

An additional CNE located far downstream (Far 3') was also identified from the 

VISTA enhancer browser computational dataset and tested in vivo (Visel et al., 2007). 

This element was able to direct some expression to the developing spinal cord but not the 

pituitary gland (Figure 3.1 C; VI). The Far 3' CNE lies ~63 kb 3' of LHX3 and 31 kb 5' of 

the nucleus accumbens-associated protein 2 (NACC2) gene. NACC2 is expressed in the 

developing nervous system but not the pituitary (Visel et al., 2004). It is therefore 

possible the Far 3' is an enhancer of NACC2 expression. In mouse, Lhx3 expression 

begins at approximately e9.5. By e11.5, robust Lhx3 expression is detected in both the 

developing spinal cord and pituitary. Additional Far 3' transient transgenic founders were 
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evaluated at e11.5 and no beta galactosidase activity was detected (data not shown). This 

result and the fact that the nearest gene, NACC2, is expressed in neural tissues makes the 

role of the Far 3' CNE in LHX3 gene regulation difficult to interpret.  

One recognized characteristic of an enhancer is the ability to act independent of 

position to guide expression from a heterologous basal promoter (Blackwood and 

Kadonaga, 1998). Construct IV containing the LHX3 promoters and the 3' region in its 

native position exhibits tissue-specific transgene expression. To determine if the 3' region 

acts as an independent enhancer, we tested a transgene containing the 3' region upstream 

of the HSP68 promoter, a basal promoter which lacks activity in the absence of an 

enhancer in transgenic mice (Kothary et al., 1989; Pennacchio et al., 2007) (Figure 3.1 B; 

V). The construct V expression pattern recapitulates that seen with the LHX3 construct IV 

(Figure 3.1 C; V). Therefore the 3' enhancer region has transferrable activity independent 

of its native promoters and genomic position. 

Endogenous LHX3 Expression Correlates with the Expression Pattern  

Guided by the 3' Enhancer Region During Development 

To more completely dissect the spatial and temporal expression patterns of the 

enhancer region, stable transgenic lines were generated using the HSP68 promoter 

downstream of the full 3' enhancer region (Figure 3.1 B; V). Whole mount beta 

galactosidase staining of the embryos showed that the enhancer element was activated at 

about e9.5 to e10.0 in Rathke’s pouch, the primordium of the pituitary. Spinal cord 

expression preceded pituitary expression slightly and was easily detectable at e9.0 to e9.5 

(Figure 3.2 B; and data not shown). In previous studies it has been shown that mouse 

Lhx3 is activated by e9.5 in both the pituitary and spinal cord (Bach et al., 1995; Seidah 
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et al., 1994; Zhadanov et al., 1995). To examine whether the 3' enhancer region activation 

coincided with endogenous Lhx3 activation, we used serial sections from the same 

embryo to control for differences in activation of Lhx3 expression between embryos. 

Serial sections were stained for either beta galactosidase activity or 

immunohistochemistry was performed using antibodies against mouse LHX3 protein. 

LHX3 expression and the spatial pattern of enhancer-directed transgene activity were 

similar, consistent with a role of the 3' enhancer region in LHX3 gene activation (Figure 

3.2 A). LHX3 protein expression appeared stronger in the developing spinal cord than in 

the pituitary matching the pattern of expression seen for the enhancer directed transgene 

(Figure 3.2 A).  

Whole mount staining at e12.5 revealed high levels of transgene expression in the 

developing spinal cord and pituitary in a pattern consistent with the expression pattern of 

endogenous mouse LHX3 protein (Figure 3.2 B). Some ectopic expression was found in 

the epidermis and the nasal cavity (Figure 3.2 B). LHX3 has not been shown to be 

expressed in these areas. This activity may be attributed to effects from the site of 

transgene integration or might also be because other regulatory elements not contained 

within the transgene are needed to more tightly regulate LHX3 expression.  

Expression of the transgene in the pituitary was consistent with a subset of the 

endogenous LHX3 expression pattern. The transgene was expressed throughout the 

unclosed Rathke’s pouch, recapitulating LHX3 expression patterns, but became restricted 

to the ventral portion of the pituitary by e14.5 (Figure 3.2 C). In contrast, LHX3 is more 

strongly expressed in the dorsal pituitary with weaker expression in the ventral pituitary 
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by e12.5 (Raetzman et al., 2002). At postnatal day 1 (P1), expression was absent from the 

intermediate lobe (Figure 3.2 C).  

Next to examine the expression pattern on a cellular level; I wanted to determine 

which hormone-secreting cell types also showed enhancer directed expression. Because 

the co-expression pattern of endogenous LHX3 had not previously been determined, I 

also did co-labeling experiments for the hormone subunits and LHX3. Both native LHX3 

and enhancer-directed β-galactosidase co-localize with αGSU expressing cells but not 

GH-positive cells in P1 pituitaries (Figure 3.3). 

The 3' Region Contains Several Nervous System Enhancers and a Pituitary Enhancer 

The identified 3' region contains several conserved sub-regions that were 

designated regions R1 (355 bp), R2 (680 bp) and R3 (557 bp) (Figure 3.4 A). To evaluate 

the importance of these sequences, a series of systematic deletions was generated. 

Regulatory regions R1, R2, R3 were each independently sufficient to direct expression to 

the spinal cord, but not transgenes containing the UTR region alone (Figure 3.4 A, B).  

In the absence of the UTR R1 region both the R2 and R3 enhancer separately 

directed robust expression to the developing cerebral cortex (Figure 3.5 E, F). Cerebral 

cortex expression is not detected in transgenics containing the UTR R1 (~ 4500 bp) 

element indicating a neural silencing element is contained in this region. Interestingly, at 

e14.5 in any of the deletion constructs tested containing either R1, R2, or R3, transgene 

expression is detected in the medial ganglionic eminence (MGE) that was not observed in 

transgenic mice containing the full 3' enhancer region (Figure 3.5 A, B, C, D; data not 

shown). However at e17.5, Full-HSP68 (transgene V) mice have reporter gene expression 

in the MGE (data not shown). One possible explanation for these results is an element 



47 
 

needed for temporal control of MGE expression is contained or partially contained in the 

only non-overlapping region immediately 3' of R2 (Figure 3.4).  

Only transgenic founders generated using reporter genes containing the R3 

element directed expression to both the developing spinal cord and pituitary (Figure 3.4 

A, B; X, XI, and XIII). Transgenes containing the R3 element alone were expressed in 

the spinal cord in a similar pattern to the full 7.9 kb region (Figure 3.1; V). However, 

pituitary expression was expanded to include the dorsal portion of the developing anterior 

pituitary (Figure 3.4 B; XIII). Intriguingly, the pattern of pituitary expression in a 

construct with a deleted R2 sub-region (transgene X) shows repression in the dorsal 

anterior pituitary thereby recapitulating the expression of the full enhancer element 

(Figure 3.4 B). This result suggests that a pituitary silencing or repressive element is 

contained within either the UTR R1 region or in the region between R2 and R3. 

A 180 Bp Minimal Region Is Sufficient To Direct 

Expression to the Developing Pituitary 

Sequence alignment of the R3 pituitary enhancer region from several species 

using the ECR browser identified a highly conserved region of 180 bp (designated Core 

R3, Figure 3.6 A). We generated transgenic reporter gene containing the Core R3 region 

(Figure 3.6 A; XIV). Of six transgenic embryos analyzed at e14.5, four had strong levels 

of transgene expression and directed expression to the pituitary (Figure 3.6 A, B; XIV). 

Of these, two directed weak (compared to the R3 or full 3' enhancer transgenic mice) 

expression in the developing spinal cord (Figure 3.6 A, B). Additional transgenic mice 

were generated expressing reporter genes containing overlapping fragments of the Core 

R3 enhancer. These fragments were unable to direct pituitary expression (Figure 3.6 B; 
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XV, XVI, and XVII). Fragments 2 and 3 directed some weak spinal cord expression in a 

pattern similar to the Core R3 enhancer transgenic mice (Figure 3.6 B; XIV, XVI, and 

XVII). Overall, these data indicate that key elements required to direct pituitary 

expression are contained in the 180 bp Core R3 enhancer. 

Core R3 enhancer sequences for multiple species were aligned and conserved 

putative trans-acting factor binding sites were identified (Figure 3.7). The Core R3 

enhancer contained four conserved TAAT/ATTA sequences that are characteristic of 

homeodomain protein recognition sites (Figure 3.7; sites AT1 to AT4). These sites were 

compared to the consensus binding sites of candidate factors with suggested roles in 

pituitary development and LHX3 gene regulation. AT1 matches the pituitary homeobox 

(PITX) consensus binding site. PITX1 and PITX2 are required for activation of Lhx3 in 

vitro and in vivo (Charles et al., 2005; Tremblay et al., 1998). AT2 was identified as a 

possible binding site for LHX3 and LHX4 proteins (Bridwell et al., 2001). This sequence 

might be important for autoregulation by LHX3 or regulation by LHX4. In vivo studies 

have shown that Lhx4 is required for proper activation of Lhx3: in Lhx4 knockout mice, 

LHX3 expression is delayed but returns to normal by e14.5 (Raetzman et al., 2002). AT3 

and AT4 sequences are consistent with a tandem binding site for ISL1 (Karlsson et al., 

1990). Importantly, Isl1 expression precedes and then overlaps Lhx3 expression in the 

developing spine and pituitary in a pattern consistent with a possible role in Lhx3 

regulation (Ericson et al., 1998; Pfaff et al., 1996). The pituitary defect in the Isl1 

knockout is similar to Lhx3-null mice and LHX3 expression is missing; however, 

previous studies have suggested ISL1 blocks differentiation at an earlier stage of 

development independent of LHX3 gene regulation (Takuma et al., 1998). Conditional 
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motoneuron knockouts of Isl1 do not have any markers of motoneuron development 

including Lhx3 (Pfaff et al., 1996). LHX3 and LHX4 are expressed in the developing 

bipolar interneurons of the eye at P9 and partially co-localize with ISL1. Loss of ISL1 in 

the neural retina causes loss of Lhx3 expression, but Lhx4 expression is maintained 

(Elshatory et al., 2007).  

Additional transcription factor binding sites within the Core R3 included putative 

elements for CCAAT enhancer binding protein alpha (CEBPA) and SRY-box 2 (SOX2) 

sites (Figure 3.7). CEBPA has not been implicated in LHX3 regulation, but is important 

in differentiation and proliferation events. Mouse Cebpa is expressed in the developing 

pituitary and has been shown to regulate the prolactin promoter with PIT1 (Enwright et 

al., 2003). SOX2 is known to bind to the human LHX3a promoter (Rajab et al., 2008) and 

human patients and mouse models heterozygous for SOX2 gene mutations have anterior 

pituitary hormone deficiencies (Kelberman et al., 2006).  

To determine whether these elements are required to direct expression in vivo, 

transient transgenic founders were generated with individual mutations in the putative 

SOX, AT1, AT2 and CEBPA binding sites or a combined mutation of the tandem sites 

AT3 and AT4 in the context of the 557 bp R3 enhancer (modeled in Figure 3.8 A). 

Founders with mutations in AT1 lost expression in the dorsal portion of the pituitary in 

comparison to the wild type R3 expression pattern (Figure 3.8 B). This is similar to the 

expression pattern of the full 3' enhancer. This suggests a role for the AT1 element in 

spatial control of pituitary LHX3 expression. Mutation of the tandem AT3 and AT4 sites 

abolished nearly all expression in both the pituitary and the developing spinal cord 

(Figure 3.8 B) demonstrating that AT3 and AT4 are required for enhancer directed 
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expression. However, since fragment 3 of the core R3 containing both AT3 and AT4 did 

not alone direct pituitary expression, the AT3 and AT4 elements are not sufficient for 

enhancer function (Figure 3.6 B; XVII). Individual mutation of the SOX, AT2, or 

CEBPA sites failed to alter the expression pattern of the R3 enhancer at e14.5 (Figure 3.8 

B). These sites are not required to direct expression at e14.5 however it is possible that 

they may have function at other developmental time points.  

To test whether candidate factors could bind to the AT elements in the core R3 

enhancer in vitro, electrophoretic mobility shift assays (EMSAs) were performed using in 

vitro translated proteins and 32P-labeled enhancer DNA sequences. ISL1 protein was able 

to bind probes containing sites AT2, AT3, and AT4 and mutation of these sites abolished 

binding (Figure 3.8 C). PITX1 and PITX2 protein bound to probes containing AT1 but 

not to the mutated AT1 probe or other AT sites (Figure 3.8 D, and Figure 3.9 A). LHX3 

and LHX4 proteins were able to bind probes containing AT2 (Figure 3.9 B, C, D). 

Lysates programmed with empty vector did not bind to the probes specifically (Figure 3.8 

C, D and Figure 3.9). Similarly, chromatin immunoprecipitation (ChIP) experiments 

using alpha T3 pre-gonadotrope cells confirmed in vivo occupancy of PITX1 and ISL1 

proteins in a cellular context (Figure 3.8 E). In luciferase reporter gene assays in either α-

T3 or LβT2 pituitary cell lines, addition of the R3 enhancer upstream of the LHX3 

promoters or the minimal prolactin promoter failed to increase gene activation above 

basal levels. Consistent with this lack of R3 mediated reporter gene activation, co-

transfection of PITX1 and ISL1 proteins did not synergistically activate the construct 

(n=1; data not shown). EMSA and ChIP experiments were done in collaboration with 

graduate student Soyoung Park. 
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Genetic Analysis of Regulatory Regions in CPHD Patients 

Sequencing of the R3 region of thirty three CPHD patient DNA samples 

previously screened in our lab for coding region mutations revealed no variations. 

Additionally our collaborator from the Hospital for Children and Adolescents at the 

University of Leipzig, Dr. Roland Pfaeffle screened an additional 100 candidate CPHD 

patients for mutations in the LHX3a and LHX3b promoters and the R2 and R3 enhancers. 

Patients with previously identified mutations in the coding regions of PROP1, PIT1 or 

LHX3 gene were excluded. Samples from patients with CPHD were screened by 

denaturing gradient high pressure liquid chromatography (dHPLC) (WAVE DNA 

Fragment Analysis System, Transgenomic, Omaha, NE). Fragments showing abnormal 

retention patterns on the HPLC column were subjected to Dideoxy-Sequencing to specify 

the sequence abnormality. No homozygous sequence aberrations were detected. Three 

heterozygous single nucleotide variations (SNV) were identified (Table 3.1). These SNVs 

were not found in 50 unaffected individuals sequenced. The SNV within the R3 enhancer 

region lies outside of the minimal Core R3 pituitary enhancer. 
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Figure 3.1. Distal downstream regions of the human LHX3 gene direct expression to the 

developing pituitary and spinal cord. (A) Comparative genomic analysis. The ECR 

browser was used to compare sequences surrounding human LHX3 and a Far 3' region 

identified using the VISTA enhancer browser computational dataset to frog, chicken, 

opossum, rat, mouse, dog, and cow. Conserved non-coding elements (CNE) were defined 

as regions ≥70% identity and ≥100 base pairs: red color indicates CNE; (blue) coding 

exons; (salmon) conserved intronic regions; (yellow) UTR; (green) transposable elements 

and simple repeats. (B) Reporter gene constructs I - VI used to generate transgenic mice. 

(C) Sagittal cryosections of e14.5 founder embryos stained for beta galactosidase activity. 

The fraction of transgenic embryos expressing beta galactosidase in the pituitary or spinal 

cord is shown below each respective image. The asterisk indicates ectopic expression. D, 

dorsal; V, ventral; P, posterior lobe; I, intermediate lobe; A, anterior lobe. 
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Figure 3.2. Expression patterns guided by the 7.9 kb 3' enhancer region during 

development correlate with endogenous LHX3 expression. (A) Antibody staining of 

mLHX3 and beta galactosidase activity staining of serial sections at e9.5 in a stable 

transgenic line containing construct line V. The onset of beta galactosidase activity is 

consistent with the onset of mLHX3 protein expression detected by antibody staining in 

Rathke’s pouch (RP) and in the developing spinal cord. (B) X-gal stained embryos at e9.5 

and e12.5 show strong staining in the developing pituitary (arrowhead and circle) and 

spinal cord consistent with known Lhx3 expression patterns. (C) X-gal staining of sagittal 

cryosections of the developing pituitary at e10.5, e12.5, e14.5, e17.5 and coronal 

cryosections at postnatal day 1(P1). The 3' enhancer directs expression through out the 

developing anterior pituitary at e10.5 and e12.5. At e14.5, e17.5 and P1 expression is 

restricted to the anterior lobe and is absent from the intermediate and posterior lobes. RP, 

Rathke’s pouch, IF, infundibulum, H, hypothalamus; P, posterior lobe; I, intermediate 

lobe; A, anterior lobe. 
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Figure 3.3. Native LHX3 and enhancer directed beta galactosidase expression co-

localization pattern is similar in the hormone-expressing cell types of P1 mouse 

pituitaries. Coronal pituitary sections from newborn (P1) Full-HSP68-nLacZ transgenic 

mice (transgene V) were stained by immunohistochemistry (green) for LHX3 (A–E) or 

stained for beta galactosidase activity (blue) (F–J) and double-labeled [red (upper panel) 

or brown (lower panel)] for pituitary hormones: GH (A and F), ACTH (B and G), αGSU 

(C and H), TSH (D and I), LH (E and J). Co-localization was highest (arrowheads) for 

gonadotropes and thyrotropes (C, D, E, H, I and J) and nearly absent (arrowheads) for 

corticotropes and somatotropes (A, B, F, and G). 
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Figure 3.4. Deletion analysis of the 3' region reveals several nervous system enhancers 

and a pituitary enhancer. (A) Alignment of the 3' prime region across the indicated 

species from the UCSC Genome Browser (http://genome.ucsc.edu). The fraction of 

transgenic embryos expressing beta galactosidase in the pituitary or spinal cord is shown 

beside each construct. One founder each from lines UTR, UTR R1 and R2 showed 

expression in the majority of tissues including the spinal cord and pituitary. The pattern 

was inconsistent with other founder lines and was considered ectopic expression and 

likely due to affects from the site integration of the transgene. Asterisks indicate non-

specific ectopic expression. (B) Sagittal sections of e14.5 embryos harboring constructs 

VIII (UTR R1), XII (R2), X (delta R2), and XIII (R3) stained for beta galactosidase 

activity. P, posterior lobe; I, intermediate lobe; A, anterior lobe. 

http://genome.ucsc.edu/�


59 
 

 

 

Figure 3.5. UTR R1 (~4500 bp) contains a silencing element for the developing 

forebrain. (A) hLHX3a/b promoters -7.9 kb 3′ enhancer (B) Full-HSP68 (C) UTR R1 R2-

HSP68 (D) UTR R1-HSP68 (E) R2-HS68 (F) R3-HSP68. Arrows show additional 

forebrain expression in the developing cerebral cortex (E, F) and in the medial ganglionic 

eminence (C, D). Sagittal sections at e14.5. n≥3 for all lines. FB, forebrain; MGE, medial 

ganglionic eminence. 
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Figure 3.6. A highly conserved 180 bp minimal region (Core R3) is sufficient to direct 

expression to the developing pituitary. (A) The ECR browser indicated a conserved non-

coding element (CNE, ≥70% identity and ≥100 base pairs); shown in red color. 

Constructs XIV through XVII were used to generate transgenic mice and the fraction of 

transgenic embryos expressing beta galactosidase in the pituitary or spinal cord is shown 

beside each construct. (B) Sagittal cryosections of e14.5 embryos stained for beta 

galactosidase activity. P, posterior lobe; I, intermediate lobe; A, anterior lobe. 
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Figure 3.7. Alignment of human Core R3 enhancer sequences with multiple species 

reveals conserved putative transcription factor binding consensus sequences. Putative 

SOX sites (yellow); four potential homeodomain factor sites (AT1-AT4, green); and a 

possible C/EBP site (gray) are indicated. Analyses were performed with ClustalW2.0 and 

rVISTA. 
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Figure 3.8. ISL and PITX binding sites in the Core R3 enhancer are critical for 

expression in the developing pituitary and spinal cord. (A) Potential transcription factor 

binding sites in the R3 region are shown in the context of the R3-HSP68-nLACZ 

transgenic reporter gene. (B) Mutation analyses in transgenic mice demonstrate that AT3 

and AT4 are required for pituitary and spinal cord expression in vivo and AT1 is required 

for dorsal pituitary expression. (C) ISL1 binds specifically to AT2, AT3 and AT4 in 

electrophoretic mobility shift assays (EMSA). The A3/A4 element from the enhancer of 

the rat insulin promoter was used as the positive control (Karlsson et al., 1990). P.C., 

positive control; –, empty vector programmed lysate; +, PITX1 or ISL1 expression vector 

programmed lysate; Arrows, specific bound complex; *NS, nonspecific band; F, free 

probe. (D) PITX1 binds specifically to AT1 sites in EMSA. A Bcd2x5n bicoid element 

was used as the positive control (Saadi et al., 2003). (E) ChIP experiments show 

occupancy of the Core R3 enhancer by ISL1 and PITX1 proteins in αT3 pituitary cells. 

Pull-down and input DNAs were characterized for the presence of the Core R3 enhancer 

element by quantitative PCR. Immunoprecipitation with non-immune species-appropriate 

IgG was carried out as a control and relative enrichment was calculated as the fold 

difference above the 2–ΔΔCt for the normal immunoglobulin samples. Values are mean ± 

s.e.m. for three independent experiments. 
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Figure 3.9. EMSA analysis of PITX2A, LHX3, and LHX4 binding of TAAT elements in 

Core R3. (A) PITX2A binds specifically to AT1 sites in EMSA. A Bcd2x5n bicoid 

element was used as the positive control (Saadi et al., 2003). (B) LHX3 and LHX4 fail to 

bind to AT1 sites in EMSA. (C and D) LHX3 and LHX4 bind to AT2 in EMSA, but not 

AT3 or AT4. The LHX3 consensus binding (LCB) element was used as the positive 

control (Bridwell et al., 2001). P.C., positive control; –, empty vector programmed lysate; 

+, LHX3 or LHX4 expression vector programmed lysate; Arrows, specific bound 

complex; *NS, nonspecific band; F, free probe. 
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Table 3.1. Single nucleotide variations identified in human LHX3 regulatory regions 

 

1 Numbering in reference to the LHX3a isoform (genomic DNA (g); bp upstream (-) of 

the first start methionine; bp downstream (+) of LHX3 STOP codon); * This patient was 

later identified with a compound heterozygous PROP1 mutation. 

 

Patient Region Genetic Variation1 additional 
SNP 

A R3 enhancer g.+7757C>G heterozygous 
 

B 
LHX3a 

Promoter 
g.-31G>A heterozygous 

 

C 
LHX3a 

Promoter 
g.-119C>T heterozygous 

db SNP 
rs10858245 

heterozygous 

D 
LHX3a 

Promoter 
g.-119C>T* heterozygous 

db SNP 
rs11103377 

heterozygous 
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CHAPTER FOUR 

DISCUSSION 

 

The pituitary gland is essential for the function and control of many processes in 

the body including development, growth, metabolism, reproduction and the stress 

response. Numerous studies have demonstrated that LHX3 is required for proper pituitary 

development and function. While a great deal is known about the actions of the LHX3 

protein, information about the transcriptional regulation of the LHX3 gene was limited to 

in vitro studies identifying promoter and intronic elements important for basal gene 

expression (Rajab et al., 2008; Yaden et al., 2005). The crucial regulatory elements 

required for in vivo expression were unknown. This is the first in vivo description of 

LHX3 gene regulation. This study reveals that multiple enhancers 3' of the LHX3 gene are 

involved in regulation of LHX3 pituitary and spinal cord expression. Further, this work 

presents evidence that ISL1 and PITX1 are direct transcriptional regulators of LHX3, 

functioning in part through interactions with the Core R3 enhancer element.  

These results show that PITX proteins are capable of binding to the AT1 element 

in vitro, occupy the core R3 enhancer in cells, and mutation of the PITX recognized AT1 

element affects the spatial pattern of the R3 enhancer in vivo. This suggests a mechanism 

for PITX1 in regulation of the spatial pattern of LHX3 expression in the pituitary. This 

study showed that ISL1 binds specifically to the AT2, AT3 and AT4 elements in vitro 

and occupies the core R3 enhancer in vivo. Mutations of the AT3 and AT4 elements 

resulted in almost complete loss of expression in both the pituitary and spinal cord. 

However, alone these elements were insufficient to direct any pituitary expression 
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suggesting a combination of homeodomain and perhaps other factors is required for 

enhancer activity. This implicates ISL1 for the first time as a regulator of LHX3 gene 

expression in the ventral portion of the anterior pituitary and the spinal cord. Results of 

this study are summarized in Figure 4.1. 

Screening of 100 CPHD candidate patients in the LHX3a and LHX3b promoters 

and R2 and R3 enhancers and of 33 additional candidate patients in the R3 enhancer has 

revealed no homozygous variations in these regulatory regions to date. There are several 

possible explanations for this. First, the cohort of patients screened was relatively small 

in number and mutations may yet be found in other patients. It is also possible that 

additional enhancers play roles in pituitary development in particular in somatotrope 

development. Support for this includes the observation that the R3 enhancer region was 

found to be primarily expressed ventrally where gonadotropes and thyrotropes develop 

and not dorsally where somatotropes are found. Alternately the low degree of variation 

observed suggests a high level of evolutionary constraint and may indicate mutations in 

these regions are detrimental to survival. Considering that patients with LHX3 coding 

region mutations survive this seems unlikely (Bhangoo et al., 2006; Kristrom et al., 2009; 

Netchine et al., 2000; Pfaeffle et al., 2007; Rajab et al., 2008). Although several known 

regulatory mutations are associated with human disease, it is a relatively rare cause of 

human disease and most have been found in proximal promoters. Less than 1.8% of the 

mutations documented in the Human Gene Mutation Database are point mutations in 

non-coding regions (Noonan and McCallion, 2010). This percentage likely reflects the 

difficulty in correlating mutations often found far from the coding regions of genes to 

specific human diseases. 
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Though PITX1 and PITX2 are known upstream factors in the regulation of LHX3 

no mechanism had been previously identified (Charles et al., 2005; Tremblay et al., 

1998). PITX1 and PITX2 are expressed strongly in the dorsal pituitary with weak 

expression ventrally in a pattern similar to LHX3 during development. However in P1 

and adult pituitaries these PITX proteins are mostly found to co-localize predominantly 

with the αGSU expressing cells found more ventrally (Charles et al., 2005; Lanctot et al., 

1999). This is nearly identical to the LHX3 expression patterns shown in this study at P1 

and previous studies at earlier time points (Bach et al., 1995; Seidah et al., 1994; 

Zhadanov et al., 1995).  

The full 3' enhancer directs expression throughout Rathke’s pouch at e9.5 but by 

e12.5 it is expressed more ventrally and by e14.5 the expression is strongly ventral and 

nearly absent dorsally (Figure 3.2). There are a few possible explanations for this 

difference between previously observed LHX3 expression patterns and enhancer-directed 

reporter gene expression patterns. Because this study uses the human enhancer region, it 

is possible that the differences in observed pituitary expression represent differences 

between mouse and human expression patterns or differences in control mechanisms 

between the two species. Equally plausible is that this enhancer is not responsible for all 

regions of LHX3 pituitary expression. Perhaps this points to one or more additional 

enhancers that direct expression in the dorsal pituitary. It is possible that pituitary 

expression of LHX3 is regulated by multiple enhancers and the identified 3' enhancer 

region acts as an activating enhancer with later roles in the ventral anterior pituitary. 

Another key difference in the expression pattern directed by the enhancer and the 

endogenous gene is intermediate lobe expression. The enhancer fails to direct expression 
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to the intermediate lobe, but both the human and mouse intermediate lobes express LHX3 

(Bach et al., 1995; Seidah et al., 1994; Sobrier et al., 2004; Zhadanov et al., 1995). 

However, the human intermediate lobe is very small or even absent in adults. The 

expression pattern directed by this enhancer may be an indication of the level of human 

LHX3 expression in the intermediate lobe. The difference could possibly represent 

morphological differences between the human intermediate lobe and that of mice. If there 

is a marked reduction in LHX3 levels in the human intermediate lobe it is possible this 

could affect its development. It is conceivable that apoptosis as a result of low LHX3 

expression in the intermediate lobe is a key factor in loss of all but just a few cells of the 

adult human intermediate lobe. Reductions in LHX3 action are known to increase 

apoptosis in the ventral portion of Rathke’s pouch during development and the 

intermediate lobes of the Lhx3-/- mice and Lhx3 Cre/Cre hypomorph mice are reduced in size 

at e15.5 (Charles et al., 2005; Sheng et al., 1996; Zhao et al., 2006). To explore this idea, 

first the mouse full 3' enhancer would need to be tested in the reporter gene mouse model. 

Then, if marked differences in expression are observed between the human and mouse 

enhancer region, a knock-in of the human enhancer region could be used to determine 

what affect this change would have on pituitary morphology. Changes in conserved non-

coding elements have been established as one way evolution of morphological change 

occurs (Carroll, 2008). This would be a high risk set of experiments because redundancy 

is very common with regulatory elements. A number of enhancers with confirmed ability 

to direct expression in vivo have been knocked out with no observable phenotype (Ahituv 

et al., 2007; Nobrega et al., 2004). 
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In this study, ISL1 was identified as a likely regulator of LHX3 gene transcription 

based on ChIP and EMSA analysis. From the in vivo mutational analysis, R3 enhancer-

directed expression in both the developing pituitary and spinal cord was shown to be 

dependent on a single tandem ATTA site. ISL is expressed in both these tissues in a 

temporal and spatial pattern consistent with a role in activation of the R3 enhancer 

(Ellsworth et al., 2008; Ericson et al., 1998).  

Several pieces of evidence in the literature point to a role for ISL1 in the 

regulation of LHX3 gene expression. ISL1 protein expression precedes LHX3 expression 

in Rathke’s pouch and at the time of Lhx3 activation ISL1 is co-localized with Lhx3 in 

Rathke’s pouch (Ellsworth et al., 2008; Ericson et al., 1998). ISL1 expression later 

primarily co-localizes with αGSU expressing cells similar to what was found in this study 

for LHX3 and the enhancer-directed transgene (Liu et al., 2005a; Liu et al., 2005b; Wu et 

al., 2010). Is11-/- mice display a similar pituitary phenotype to Lhx3-/- and lack LHX3 

expression (Takuma et al., 1998). Tissue specific knock-outs of Isl1 in motoneuron and 

neural retina also lack LHX3 expression (Elshatory et al., 2007; Pfaff et al., 1996). So 

why has ISL1 not previously been identified as a potential upstream factor of LHX3? 

Probably the primary reason for this is that after the early overlap of expression, the two 

proteins segregate into a largely inverse expression pattern with ISL1 restricted to the 

most ventral region and LHX3 expressed dorsally. This led to the interpretation that the 

phenotypes of the Isl1 knock-out in both the pituitary and motoneurons blocked 

development at an earlier stage and was not the result of LHX3 loss (Elshatory et al., 

2007; Pfaff et al., 1996; Takuma et al., 1998). Although ISL1 likely has other early roles 

in the development of neural retina, pituitary and spinal cord it is also possible it acts as 
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an activator of LHX3. Earlier roles of ISL1 in differentiation do not necessarily exclude a 

direct role in the activation of specific factors. The regulatory relationship between LHX3 

and ISL1 is likely complex. Loss of LHX3 in mice does not affect PITX1 or PITX2 

expression however the spatial and temporal expression pattern of ISL1 is affected. In 

Lhx3-/- mice, ISL1 is expressed normally at e9.5, but is transiently lost at e12.5 (Ellsworth 

et al., 2008; Zhao et al., 2006). At e16.5 and e18.5, ISL1 expression returns but its 

expression is shifted dorsally (Ellsworth et al., 2008). This and the largely inverse 

expression pattern of the two proteins after e9.5 have suggested LHX3 is a both a positive 

and negative regulator of Isl1. Work presented in this study suggests that ISL1 may also 

regulate LHX3 activation and later its activity in αGSU expressing cells. 

LHX3 has important roles in somatotrope development based on both the mouse 

models and the human CPHD patients with LHX3 coding regions mutations (Colvin et 

al., 2009). Although LHX3 is not co-expressed at P1 with somatotropes it seems likely it 

is found in somatotrope progenitors based on its expression throughout Rathke’s pouch 

and importance in somatotrope development. An alternative hypothesis is that LHX3’s 

action on somatotropes is not direct. To more completely answer where enhancer-

directed expression is found during pituitary development and by extension LHX3 

expression, a cre recombinase lineage tracing approach is being used. Two mouse lines 

have been generated containing the human full 3' region upstream of the HSP68 promoter 

directing cre recombinase, and these have been crossed to floxed stop reporter strains. 

Unfortunately the expression patterns of the two founders are too variable to draw any 

conclusions without examining more transgenic lines. This variability is most easily 

explained by site of transgene integration effects. Additional transgenics are being 
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generated. Some early data however indicates the enhancer does not direct expression in 

somatotrope progenitors. Unlike a positive result in which enhancer-directed transgene 

co-localization would suggest LHX3 co-localization in progenitors, this result gives us no 

information as to whether LHX3 is expressed in somatotrope progenitors. Additional 

experiments will be needed to determine the lineage specific expression of LHX3. 

Possible methods include generating a LHX3 bacterial artificial chromosome-cre mouse 

model or co-labeling with somatotrope lineage specific transcription factors. Two 

transcription factors PIT1 and MATH3 could be used to identify somatotrope progenitors 

prior to GH expression at e15.5. PIT1 is known to be required for somatotrope, 

lactotrope, and thyrotrope development. MATH3, downstream factor to PIT1, is 

expressed at e13.5 and required for maturation and expansion of somatotropes (Zhu et al., 

2006).  

The R1, R2, and R3 enhancers were found to direct nervous system expression in 

the developing mouse embryo (Figure 4.1). Whether these enhancers are functionally 

redundant or direct unique expression patterns in the developing spinal cord will require 

further study. Additional co-localization experiments with lineage specific transcription 

factors HB9 (motoneurons) and CHX10 (interneurons) are also needed to determine on a 

cellular level where the enhancer regions direct expression in the developing spinal cord 

(Thaler et al., 2004). 

Another interesting finding from this study is the presence of potential silencing 

elements. Future work will be needed to isolate these elements and determine how they 

are functioning mechanistically. Insulators or repressors are known to block enhancer 

activity or serve as a barrier between areas of open and closed chromatin and in some 
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cases function in both manners (Gaszner and Felsenfeld, 2006). Numerous studies have 

shown the CCCTC-binding factor (CTCF) is found at many insulators but exactly how 

CTCF functions in enhancer insulating and blocking is unknown (Noonan and 

McCallion, 2010). Insulators repressing expression in the dorsal pituitary and in 

developing cerebral cortex were contained within either the UTR R1 region or in the 

region between R2 and R3 (Figure 4.1). R1 may contain these insulator elements. 

Potential CTCF binding sites were identified using TRANSFAC in R1, but these did not 

strongly match the known consensus sequence of CTCF. Further experiments are needed 

to determine if R1 is an insulator element, what trans-acting factors are needed for its 

functions, and if CTCF binding is required for R1 insulator function. 

The AT1, PITX binding site, was identified as important in spatial control of the 

enhancer-directed pituitary expression. This pattern could indicate a function of this site 

in dorsal pituitary repression of the larger full 3' enhancer. A potential mechanism for this 

observed activity is that an unknown dorsal factor bound to the insulator element 

facilitates chromatin looping between the R3 enhancer and the insulator that is mediated 

by PITX protein bound to the AT1 element and this looping isolates the R3 enhancer 

away from the proximal promoter (Figure 4.2). In the context of the R3-HSP68 

transgene, without the insulator regions, the enhancer is not sequestered away from the 

proximal promoter and is able to direct dorsal expression in the pituitary. Chromatin 

conformation capture (3C) experiments will be needed to test this hypothesis after a 

minimal insulator element is identified. A similar mechanism of function has been 

identified for the H19ICR insulator. In 3C experiments, H19ICR enhancers and the 
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promoter region were shown to form loops with the insulator that blocked gene 

expression (Yoon et al., 2007). 

Several chromatin markers have been associated with active enhancers including 

monomethylation on histone H3 lysine 4 and acetylation of histone H3 lysine 27 

(Heintzman et al., 2009; Heintzman et al., 2007). Active enhancers have also been 

associated with binding of the transcriptional co-activator p300. Recent global ChIP 

sequencing experiments using e11.5 mouse forebrain, midbrain, and limb tissues were 

able to highly correlate p300 binding with active enhancers which when tested directed 

tissue-specific enhancer expression in the same tissue with in vivo occupancy of p300 

(Gotea et al., 2010).  

Further, this same study, showed homotypic clusters of transcription factor 

binding sites were found to be abundant in both promoter regions and developmental 

enhancers and were more highly correlated with functional activity than CNEs not 

containing homotypic sites (Gotea et al., 2010). Intriguingly, I have found that both the 

R2 and R3 enhancers contained multiple conserved TAAT sites (numbering 9 and 4 

respectively). A combination of the TAAT elements in R3 was also found to be needed 

for proper enhancer activity. This discovery of homotypic TAAT sites within the LHX3 

enhancers may have broader implications for the regulation of other LIM-HD 

transcription factors. Similar to the LHX3 gene, a 15 kb region 3' of the LHX4 gene 

contains conserved regions with multiple TAAT elements (Sequences analyzed using the 

ECR browser). Considering the close relationship of these genes it is highly probable this 

3' region of the LHX4 gene may also function as an enhancer of neural and pituitary 

expression. Additionally, the less related LIM-HD transcription factor LHX2 is expressed 
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primarily in the neural ectoderm and developing cerebral cortex and shows areas of high 

conservation 5' of the gene with multiple TAAT elements (Sequences analyzed using 

ECR browser) (Hunter and Rhodes, 2005). These findings suggest TAAT homotypic 

clusters may play broad and important role in the regulation of LIM-HD genes in 

multiple tissues. 

Interestingly, a NOBOX binding site [TAATT(G/A)] was highly associated with 

forebrain activity in the p300 ChIP sequencing study. NOBOX is not found in the 

forebrain. However, LIM-HD transcription factors are important in transcriptional 

regulation of multiple systems and have consensus binding sequences similar to the 

NOBOX binding site. LHX2 is highly expressed in the developing forebrain and could 

potentially be the factor binding to these identified sites (Gotea et al., 2010; Hunter and 

Rhodes, 2005). In the absence of the insulator regions, R2 and R3 both have very robust 

forebrain expression. This suggests the default for enhancers with homotypic TAAT sites 

is to be active in the forebrain, and insulator regions likely play key roles in the 

repression of ectopic forebrain expression. This result also highlights an important caveat 

to these types of studies. Many studies look at enhancer elements based on conservation 

and analyze these in isolation (Visel et al., 2007). It is important to keep in mind the true 

activity of the enhancer is dependent on interactions with other regulatory regions in its 

native position and many of these interacting regions are found many kb away (Noonan 

and McCallion, 2010).  

The studies presented in this report describe and characterize the first known 

pituitary and spinal cord enhancers of LHX3 and are the first step in uncovering the 

mechanisms required for proper spatial and temporal expression of the LHX3 gene. In 
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addition to identifying other important regulatory regions, future research will need to 

explore the interactions between the LHX3 proximal promoters, insulator regions, and 

enhancers. Uncovering how these elements interact to direct tissue-specific gene 

expression will be essential to understanding the mechanisms behind LHX3 gene 

regulation and understanding pituitary development on a molecular level. Information 

gathered about LHX3 may have implications in the regulation of other LIM-HD genes 

and give us insight into how gene regulation works in general. The molecular cause of 

most cases of CPHD is unknown (Dattani, 2005). Further understanding and 

identification of important LHX3 gene regulatory regions will allow for the identification 

of novel genetic defects responsible for CPHD and will facilitate patient treatment and 

enable genetic counseling. 
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Figure 4.1. A schematic summary of findings. Regulatory regions R1, R2, and R3 are 

sufficient to independently direct expression to the central nervous system (CNS). Only 

R3 directs pituitary and CNS expression. PITX proteins bind to the AT1 element in vitro 

and occupy the Core R3 enhancer. Mutation of the PITX recognized AT1 element affects 

the dorsal pituitary expression pattern of the R3 enhancer in vivo. ISL1 binds specifically 

to the AT2, AT3 and AT4 elements in vitro and occupies the Core R3 enhancer in vivo. 

Mutations of the AT3 and AT4 elements resulted in almost complete loss of expression in 

both the pituitary and spinal cord. Pituitary and neural insulators are contained within 

either the UTR R1 region or in the region between R2 and R3.  
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Figure 4.2. A hypothetical mechanism for regulation of the spatial expression pattern in 

the developing pituitary. In the dorsal pituitary, an unknown factor bound to the insulator 

element facilitates chromatin looping between the R3 enhancer and the insulator that is 

mediated by PITX protein bound to the AT1 element. This looping isolates the R3 

enhancer away from the proximal promoter and silences dorsal pituitary expression. In 

the ventral pituitary, because the dorsal factor is absent the interaction does not occur and 

the R3 enhancer is able to loop to the promoter and activate gene expression. Prom, 

promoter; Ins, insulator element. 
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