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ABSTRACT

Andrew Stephan Gamble

COMBINING MULTIVARIATE STATISTICAL METHODS AND SPATIAL
ANALYSIS TO CHARACTERIZE WATER QUALITY CONDITIONS IN THE

WHITE RIVER BASIN, INDIANA, U.S.A.

This research performs a comparasuedy of techniques for combining spatial
data and multivariate statistical methods for characterizing water quality conditions in a
river basin. The study has been performed on the White River basin in central Indiana,
and uses sixteen physical and cieahwater quality parameters collected from 44
different monitoring sites, along with various spatiata related to land u$dand cover,
soil characteristics, terrain afa@teristics, ecoegions, etc.Various parameters related to
the spatiatlatawere analyzed using ArcHydro tools and were included in the
multivariate analysis methods for the purpose of creating classification equations that
relate spatial and spattemporal attributes of the watershed to water quality data at
monitoring stations.The study compares the use of various statistical estimates (mean,
geometric mean, trimmed mean, and median) of monitored water quality variables to
represent annual and seasonal water quality conditibims relationship between these
estimates and thepatial data is then modeled via linear and-lv@ar multivariate
methods. The linear statistical multivariate method uses a combination of principal
component analysis, cluster analysis, and discriminant analysis, whereas-timeaon

multivariate méhod uses a combination of Kohonen S@tfjanizing Maps, Cluster



Analysis, and Support Vector MachineBhe final models were tested withcent and
independentlata collected from stations in the Eagle Creek waterstigan the White

River basin In 6out of 20 models the Support Vector Machine more accurately
classified the Eagle Creek stations, and in 2 out of 20 models the Linear Discriminant
Analysis model achieved better results. Neither the linear climear models had an
apparent advantagerfthe remaining 12 models. Thisearch provides an insight into

the variability and uncertainty in the interpretation of the various statistical estimates and
statistical models, when water quality monitoring data is combined with spatial data for
chalcterizing general spat and spatieemporal trends.

Meghna BabbaGebens, Ph.D.
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INTRODUCTION

GIS and remote sensing technology create means to measotes \&patial
charateristicsi e.g., land cover, geomorphologic, climatic, geologic, hydrologic, and
ecologic parametersassociated with nepoint pollution sources in river basins (Ward
and Trimble, 2004). Quantitative assessment of thes@aioi pollution sources is
needed, in order to better manage the relationship between human impact on the land and
water quality. Additionally, norrpoint source pollution such as combined sewer
overflows, have a great effect on water quality, especially during low flow periods
(Ferelon, 1998).Anthropogenic sources of pollution greatly affect the water quality in
agricultural and urban areas. For example, runoff from row crop agriculture has resulted
in excesdertilizer in the White River watershed. This has resulted in antel@vaitrient
level that has caused problems in the tributaries and reservoirs (e.g. excess
eutrophication) that make up the WéhRiver watershednd is a leading cause of
eutrghication in the Gulf of MexicqGoolsby etal., 2000). Urban sources can alsave
an impact on water quality in a river basin. For example, induatréhivastewater
treatment dischargeshd road runoff can greatly increase the salinity of surrounding
wate bodies, as well as introduogher toxic substances, metals, and pharotacds.

To add to the complexity, changes in the landscape throughout the watershed have led to
significant temporal changes in the nature and contaminant loadings of variepsinbn
sources of pollution. Regular monitoring can alleviate some of tedlenges and help
identify thecontaminansources anttends inwater quality conditionUSEPA, 2007).
However, regular and spatially rigus monitoring can be expensiaed therefore)imit

the number of monitoring sites and the frequency of reangin a river basin For this

reason, a screening method can be useful in characterizing water quality in the
unmonitored tributaries of a river basin and for analyzing the conditions and impact of
land-use over time on water quality.

Several studehave developed empirical models that can be used to predict water
quality. Linear multivaride approaches that combipencipal component analysis
(PCA)/factor analysis (FA), cluster analysis (CA), and linear discriminant analysis (LDA)
havebeen useth many water quality prection studies (SanteRoman et al., 2003; Paul
et al, 2006; Jenerette al., 2002;Snelder et al., 2005; Iscen et al., 2007; Frohlichl.et



2007). Santofoman etl. (2003) used combination of FA, CA, antdDA methods to
predictwater quality inunmonitored watersheds in Puerto RicoFAwas used to

reduce the number of physical and chemical parameters into fewer variables. Using
parameters determined by the FACA grouped the watersheds into five clusters:
forestedurbanpolluted, mixed urban/forested, plutonic forested, and limestone. Each
clusterbés water quality was described base
constituents selected in the factor analysid.DR using physical attributes of each
watershed wathen performed to predict membership into one of the five clusters. The
physical attributes used were: rate of change of forest land cover from 1977 to
1991/1998, percentage of limestone, mean annual rainfall, and shape factor. The rate of
change of feest land cover was most successful in discriminating between clusters.
Prediction equationslerived from the LDAwere formulated that allow for a user to

insert the aforementioned physical attributes of an unmonitored watershed and determine
to which water quality cluster that watershed belongs.

Paul efal. (2006) used similar techniques that clustered watersheds based on
related watershed characteristics. The goal of this study was to look at fecal coliform
data and group impaired streams based amt pad non point sources inea&ht r e a ms 0
watershed. Snelder &k (2005) used PCA and CA to show the classification strength of
an existing mapped classification ofars in New Zealand. Iscena&t (2007) used
PCA/FA and CA to classify water qualiat twelve different sites in Uabat Lake,

Turkey. Frohlich eal. (2007) found that lithologic signals and anthropogenic point
sources caused differences in stream chemistry in the Dill River watershed in Germany
using PCA/FA and CA. Snapshot datdoat flow, high flow, and mean flow, rather

long term Iistorical data, was used in the Frohlich esaidy.

All of these studies have certain limitations to their methdde SantofRoman
et al.(2003) study had issues with limited data because ssmy@re taken only a few
times per year for 23 year®aulet al.(2006) also had limitations due to data
availability. The Iscert al.(2007), SantecfRomanet al.(2003), and Frohliclet al.

(2007) studies used only the meatues of water quality vaables while conducting the
PCA and CA. SanteRomanet al.(2006) considered the median, but ttisdy did not

show a difference between clustering the mean vetsgteringmedian time averaged



data This may have been a result of the lack of dasdlahle for their study. Lastly, the
methodology, in all of the aforementioned studies, was limitetidynssumption of
statisticallinearity.

An increasingly popular approach to the clustering and classification of data is the
use of nonlinear empirat modeling techniques, such as artificial neural networks (ANN)
and support vector machines/8). The main advantage of these Aoreartechniqus
to the linear multivariate techniquessthat theycan learn th@onlinear dependencies
between variabkin a complex system, without the knowledge of the underlying
processes. For example, for simulation of dependencies between various drivers and
their effects in a watershed, these methodsalaequire specific information about the
underlying hydrologal sub processes to create a model (Jiang and Nan, 2006).
Application of artificial neural networks and support vector machines to the
environmental fieldand specifically, in the prediction of water quality hagen
explored in multiple studieg®.g, Bowers and Shedrow, 2000; Park, 2003; Yunrong and
Liangzhong, 2009). The European Commission conducted a study called PAEQANN
that used artificial neural networks to provide a predictive tool that would better enable
lawmakers to enact effective polisien freshwater magement (Park, 2003). In this
study, the PAEQANN researcheused a type of ANN, thiKohonen SeHOrganizing
Map (SOM), to formecologybasedegionalization.They applied the SOM to data that
described the presence or absence of hiatpecies, and derived clusters based on the
results In another studyBowers and Shedrow used another type of ANN, the Back
PropagatiorANN (BP-ANN), to create a predictor model of water quality. They selected
precipitation, flow rate, and turbidity agput variables in order to predict suspended
solids using a BFANN at their Savannah RiveGeorgiasite. A differentstudy by
Yunrong and Lianzhong (2009) compared the performance of a SVM andhalBin
the prediction of certain water quality variebl In their study they used ten different
water quality variables to predict the futureued of Chemical Oxygen Demanddan
Dissolved Oxygen They concluded that the SVM outperformed theA¥N in terms of
model forecasting accuracy.

The choice of liear and nottinear statistical approaches for designing erogi

models is a key aspect in the currstudy. Linear and nelinear multivariate techniques



have both been showa beeffective water quality prediction techniques. A comparative
analysisof both linear and nonlinear techniques can provide greater insight into the study
of forecasting river water quality conditions. In this study, the R@MA + LDA
methodlogy, as described by SantBemanet al.(2003) was applied to the White
River. Aparallel nonlinear methodology that also used physical watershed variables to
predict water quality conditions wasoposed and tested his methodology applied a
SOMi CA methodology gimilar to thePAEQANN study) to create water quality
clusters. Thethese results were combined with an empirical classification model
created by an SVM using physical watershed variables as infdtitionaly, long term
water quality data was time averaged and used in conjunction with the physical
watershed data. Thaverall objective of this researglasto evaluate existing
classification methods used for the screening of water quality conditions in the White
River watershed. The methods are tested for the White River basin in Indiana based on
the following specift objectives:
1 Compare statistical multivariate models that use spatial and temporal

characteristics to predict water quality conditions at unmonitored sites in the

White River basin based on: (1) the choice of statistical indigatomean,

median, tnmmed mean, and geometric mefor)time averaging water quality

data, (2) the choice of time averaging based on seasonal or annual durations, and

(3) the choice of using a linear or ntmear methodology

1 Validate the models using water quality monitoridada not in the original data

set.



MATERIALS AND METHODS
Case Study White River Watershed
The White River Basin drains 11,350 square miles of central and southern Indiana

and is part of the Mississippi River system (Jacques and Crawford, 1991)m 8awa
in the watershed generally peaks in the spring months and is lowest ireteertaher
and fall (Fenelon, 1998 The entire basin can be divided into eight different sub
watersheds that havedsgit hydrologic unit codes (HUC). They are the Uppérite,
Lower White, Eel, Driftwood, Flatroeckaw, Upper East Fork White, Muscatatuck, and
Lower East Fork (Figure 1). Agriculture accounts for about 70% of the land use
throughout the basin, with most of the crop production coming fotationalsoybeans
and corn. Urban land use makes up approximately 8% of the watershed, and, as of 1990,
2.1 million people live in the entire basin. However, tH@eths of the population in
the basin is located in Upper White, which contains the largest metropobtzsoh
Indianapolis, Anderson, and Muncie. These three cities represent a significant amount of
industrial development. The soutbntral portion of the basin is not as extensively
farmed since it isinglaciated, has poor soils, anansach hillier. Mcst of the forested
landscape is located in this area, which makes up approximately 22% of the watershed.
Significantuses of the surface wateithdrawn from the White Rivenclude
thermoelectric powerndustrial and mining uses, irrigation and livegtognd public
drinking water supplyRenelon, 1998

For this studywater qualitydata was collected from the Indiana Department of
Environmental Management (IDEM) fixed station database. The 2 main branches in this
watershed are the main branch of Wkite River and the East Fork of the White River.
Respectively, the White River main branch and the East Fork of the White River have 11
and 5 water quality monitoring stations located directly on them. There are 2 monitoring
stations that are locatedwlostream from the junction of these branches, and the
remaining 26 monitoring stations are located on tributaries feeding these two main
branches (Figure 2). The IDEM fixed station database is historic and ranges from 1991
to 2008for the current study data collection is ongoingWater quality samples are
generally taken monthly for these statiofsom this database, a combination of 44

stations and 16 water quality variables met the requirements of completeness to prepare



the dataset for this studyhysical watershed attribute datas obtained (explained in
detail below in a later sectioby delineating the watersheds of interest in a geographic
information system (GIS). Spatial data for the White River watershed is extensive and
freely availablédrom a variety of internet databases.

Water Quality Data Preparation

Indiana Department of Environmental Management Fixed Station Monitoring Database
Before anymultivariate statistics were mythe water quality data from the

Indiana Department of Emanmental ManagementDEM) fixed station monitoring

database had to be sorted and prepared. The goal in data preparation was tormseate an

m data matrix, withn representing water quality monitoring stations anepresenting

water quality variablesThe first step in accomplishing this process was to determine

what combination of statiorendvariables would be acceptable for this study.

Originally, 46 stations and 17 water quality variables were considered because of data

availability. Data qualy and outliers would later reduce the size of this dataset.

However, before this reduction occurred, the datasets were divided into an annual dataset

and four quarterly datasets. The quarterly datasets were defined as Jankmch31

(Quarter 1), Aril 17 June 30 (Quarter 2), Julyi1September 30 (Quarter 3), and

October Il December 31 (Quarter 4Yhese time periods were chosen to represent

seasonal changes in water quality. Additionally these time periods can ke vsiekct

the differentflow regimes of the watershed, with higher flows expected in Quarters 1 and

2 and lower flows expected @uarters 3 and 4 (Fenelon, 199&our different statistical

indicators were chosen to tira@erage each water quality variable at each site: mean,

median, trimmed mean, and geometric mean. Different statistical indicators were taken

in order to determine if they caused differences in the clusteridgssification to be

conducted in the multariate analysis. The apparent advantadgbe mean ésin the

fact that it contains all of the information about all of the data; however, this can also be a

disadvantage when large outliers skew the value of a data point. Thus, the apparent

advantage to themedian and geometric meaan be attributetb theirrobushessio

outliers The trimmed mean is considered seafiust since it removes the largest and

smallest values (for this studd®b of the datat each extremeas removed), and takes

the mean of the remaining data.



Accounting for the valugof observations below the detection limit was an issue
in calculating the different statistical indicators. The regression on order statistics (ROS)
method was used to estimate the value for the missing observation ¢6aigR006).

The regressiomethods are parametric in nature and assume a normal, log normal, or
gamma distribution. Essentially, the slope and intercept of a regression line are
computed using detected data, and thedhetect data is estimated by this regression line
(Singhet al, 2006). The recommended ROS method for environmental data is known as
the Hel sel 6s robust ROS, and-ddatectddatasnigger f or m
scale, then transforming the results back to the original scale (&irdjh2006). The
statstical program proUCL 4.(Singh et al., 2007Ayas used to estimate the Ron

detectable data, and after the ROS method was completapthged datasets were used

to calculate statistical indicatoraneans, trimmed means, and geometric medhs.

ProUCQL 4.0 software was developed to estimate the upper confidence limit (UCL) of an
unknown population mean, and it includes other statistical tools, such as the ROS tool.
After combining the different annual and quarterly datasets and 4 different statistical
indicators, 20 data matrices were formed.

The newly created datasets were investigated for potential problems arising from
data quality and outliers among the monitoring stations. The first issue of data quality
arosewith theEscherichia coli (E. coliylata. This water quality variable differed from
the other water quality parameters that were chbseausdt was not as frequently
sampled as the other parameters. Addition&llyolivalues are highly dependent the
timing and location of a samghlndthereforehighly variable. Lastly, the methodology in
the IDEM dataset for determinirig} coli changed in 1999 from colony forming units/

100 ml to most probable number/100 mlfter considering the few sample$E.ooli at

each stationthe lack @ reliablesampling and the change in methodology in 198%vas
determined thaE. oli would not be a practical parameter to describe water quality
conditions for this study. No data quality issues were found with the remaining 16
variables, and theseere the variables chosen to give a general description of the water
quality conditions at each given site. Table 1 shows the 16 chosen varidb&esecond
issue dealt with in constructing the final data set was identifying very large outliers that

could cause problems with the future analyses. Two stations had abnormally large values



of certain variablessuch as alkalinity and specific conductance. After further
investigation it was determined that these stations monitored underground rivees. Sinc
this study is investigating surface water quality, these two stations were removed
permanently. The final datasgascomposed o& 44 statioax 16 water quality variable
matrix.
Eagle Creek Watershed Managemelan Database

The Eagle Creek WatershdthnagemenPlan(ECWMP) (Tedesco et al., 2005)
database was used to test the performance of the modeld$roradiee IDEM water
guality data. The ECWMP datasets wprepared exactly the same way as the IDEM
data with a few key differencesn this dataet 11 sites were sampled from March 2007
to March 2010 for the current studyataset is ongoingWaterquality variables were
time averaged with the same sttitigl indicators for an annual dataset and quarterly
datasets, and the naletectable dataas estimated using the ROS methétbwever,
some of the water quality variables were missing or prepared differently in the ECWMP
dataset. @emical Oxygen Demand and Total Iron were not samplédte ECWMP and
could therefore not biacluded in the datet Additionally, nitrate and nitrite were
measured as separate variables in the ECWMP dataset, so they were simply added
together to make them comparable to the IDEM dataset.

Watershed Delineation

The ArcHydro toolbox and a 3feter digital elevatiomodel (DEM) of the
White River Watershed were uskxt delineating the watershellainage area afach
water quality monitoring station (ESRI, 2005). Before delineation could take place, the
raw DEM had to be preprocessed and several additional griesreated. The AGREE
method, developed at the University of Texas at Austin in 83 used to recondition
the DEM for watershed delineation (Hellweger, 1997). Wiete River watershed
stream network, as described by the National Hydrography Dak#d8X)( was first
i b ur imte ®WleODEM. This ensured that the stream network derived from the DEM is
close toreality. Additionally, any sinks or depressions in the DEM were filled, so the
delineation algorithndid not creatdalsewatersheds. After thedwo steps were
complete, a flow direction grid was created. This grid shows the direction water will

flow by indicating the direction of steepest descent from one cell to another. The next



grid created was the flow accumulation grid. This grid use$lolv direction grid to
determine the number of cells upstream of a given cell, and can be used to define the
stream grid. With the stream grid defined, the stream is then broken up into segments
andcatchments are definddr each of these stream segns At this point the locations

of the water quality monitoring stations are located and the watersheds for each station
are defined.

Variable Reduction

Lineari Principal Component Analysis

Principal component analysis (PCA) is a variable reductiongature used when
dealing with a large number of variables believed to be correlated with each other (Suhr,
2005). Redundant variables are reduced to artificial variables called principal
components or factors which account for most of the variance tlatheand are
orthogonal (and, therefore linearly independent) to each obeniving principal
components is accomplished by finding the eigenvalues of the covarianmceahtte
original variables. The PCA model is:

L4 1)
wherellis a matrix of observed input variablésjs a matrix of factor scores, arjdis a
matrix of eigenvectors or the factor pattern.
Since variables are not necessarily scaled the same, they are standardized so that they are
comparable (Fodor, 2002) Oncetfars are calculatedt is necessary to determine the
number of meaningful components to retain. There are four commonly used approaches
to determine this: minimum eigenvalue equals one method/Kaiser criterion, Scree test,
proportion of variance accouwtéor, and the interpretability criter{&uhr, 2005) In this
study, the Kaiser methodias usedwhich retains any factor whose eigenvalue is greater
than one. The reasoning for this is that an eigenvalue of one would be the amount of
variance accountefor by one variable, and any eigenvalue greater than one explains
more variance due to additional variables (S2®)22004). Additionally, varimax
rotationwasalsoused, so that high variable loadireggeasily recognizable (SA2002
2004). The varmax rotation involves maximizing the variance of the loadings of each

factor(Davis, 2002) Factor variance is defined by:



’

: (2)
wherern is the number of factorg, is the number of original variable®, is the loading
of variable®n factorr), and’Q is thecommunality of théQ@variable. Additionally,
varimax rotation searchégrativelyfor a linear combinationfdactors, such that
variance is maximized by:

i A@ B i (3)
Nonlineari Kohonen SelOrganizing Map

The Kohonerself-organizing map (SOM) is an unsupervised artificial neural
network (ANN) made up of two layers, inputs and outputs that projects multidimensional
inputs onto Aimensional (in this case) space. The map or grid is made up of a user
defined topology athnumber of neurons (Rojas, 1996). The neurons are given weights
which areinitialized randomly. Figure 8hows the architecture of a simplified SOM. In
addition, a learning constant and neighborhood function are selected (Rojas, 1996). At
this point he SOM is ready to be trained. In each of the iterations of the training, an
input vector is chosen randomly and Euclidean distance is calculated betwegmuthe

vector and all the weight vectors in the m&uclidean distance is calculated: by

O B w o 4
wherew is the input vector ana is the weight vector.
The most similar neuraio a given input vectoor best matching unit (BMU), and the
weight vectors of the neurons around this unit diested to be closer to the input
vector. During thetraining process theeighborhood radius and learning rate
decreasg over time (Vesantet al, 2000). Training usually occurs in two phases: rough
training and finguning. Intherough trainingphase the neighborhood radius and
learning are relatively large, and the map takes its basic form. In thifimg phase
neighborhood radius and learning rate initialize at much smaller values (Vesahto
2000) After the SOM is trained the Euadan distance between nodes can be examined
in a visualization grid known as the unified distance matrix, which can be very useful

with clustering data.
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Data Transformations
Two important assumptions for the PCA are that variables are normally
distributed and the measurement scale is interval or tgge(Suhr, 2005). BoxCox

transformations are a common waytr@nsform a set of variablés making them linear

(Box and Cox, 1964). TheBeRox transf ormati onds most

&) — i fo a0k i f a&=0 (5)
wherewis the variable being transformed ani the power transformation
The parameter & is determined through
function Kutneret al, 2004). Basicallythis parameteis used to transforra given
variable, so that it is closest to normal as possible. SHagireWilk goodness of fit test

can then be applied to the transformed data to indicate if the data is not naimaal wi

certain level confidence. Thiest is dsigned for datasets with sample sizes between 3

and 500QHammeret al, 2009.

In addition to the normality assumption, PCA assumes that data is in interval or

measurement scalso a standardization trdogmnation was necessary (Suhr, 2005)

com

ma X i

Standardizingariables isalsorecommended when constructing the Kohonen SOM since

the map is based on Euclidean distances and data on larger scales will dominate map

organization (Vestanet al, 2000). The softmattansformatiorwas chosen for
preprocessing in the analyseékhe equation for softmax scaling is shown below in two
stepg(Collica, R.S.)

) i (6)

whereu is the variable to be scalgd is the standard deviatipand_ is the linear

response to standard deviations

The second part of the equation is referred to as the logistic function, and the first part

scales the linear portion of the logistic functiorhis transformatioms more or less

linear in the middle range of values, and it has a smooth nonlinearity at both ends which

ensures all values are in the [0 1] range and dampens the effect of outliers (‘¢eslano
2000). This standardization technique was used in allnossathat data needed to be

standardized.
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Clustering Methodology

K-Means Clustering

Cluster analysis is a method that was used to assemldatfhe of the PCA and
the SOMinto homogeneous groups, where members are distinct to their group only
(Davis, 2@2). K-means clustering was used in this work to cluster monitoring stations
with similar water quality characteristicK-means cluster analysis is a divisive
clustering method witk number of groups set priori to analysis Akumeand Weber
2002. The goal of th&k-means method is to minimize the functiori@for a given
number of clusteréAkumeand Weber2002) Each cluster has a centraigbwhich is
defined as the mean value vector of the elements in its ctust@he minimization
equation is given as:

M6 B B Ay oHE @)
Additionally, the cluster centroid of each clusbeis calculated as:

aHh s—sB5 0, fori=1,6 , m. (8)
Oncethe number of clusters is set arldster cenwidsare initialized observationgre
added iteratively to the most similar cluster, whose centroid is then recalculated until all
of the observations are grouped (Davis, 2002)e drawback to this method is that is
difficult to effectively initialize \alues for the cluster centroids, so that the optimal
clustering arrangement is formed. Therefemyeral iterations of the clustering
algorithm araunto ensure an optimal clustering arrangement is achieved (Akathe
Weber 2002). A two-level clustenmg approach was applied in this study by applying the
K-means clustering methad the first four most important factors from the PCA, and to
each SOM that was producetihe alternative to the twievel approach would be to
cluster the raw water qualityath. The main benefit oflustering the stations after
variable reductionrather than clustering the actual data is the remtuct computational
cost. Bren with a relatively small sample size, clustering algorithms can become
extremely complex (Vestamand Alhoniemi, 2000).
Cluster Identification

The DaviesBouldin cluster validity index was used to help determine the most

correct number of clusters in the dataset. Since the appropriate number of clusters is not
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knowna priori to the analysis, sexa analyses$or differentnumbers of clusterg, were
run to determine the ast likely number of clustersAlso, the initialization of the
clustering algorithm is random, so several iterations ok#fmeans algorithm are needed
until convergence of theame cluster arrangement is reached at each lekéBefdek
and Pal, 1998). The Davi&ouldin index can then be examined at each levkliof
order to identify the most likely number of clusters. The ratidusdter scattewithin the
ith clusterandthe separation between title andjth cluster defines this index. The
within cluster scatter is defined by:

Y B A aE 9)

whered is the cluster centroidyis a vector othe sample observations
Additionally, for a given clustety, GHis the cluster centrojénd, with within tuster

scatter definedbetween cluster separation is defimecttby:

Qr B oU o ot oHU (10)
Next,define’Y, for a given set of clusters

Yi YhYY T A@ % (11)
Finally the DaviesBouldin index can be defined by:

Wi YohY -B Yy Y, (12)
Compact and well separated clusters are desir#idreforeclustering occurs when the
DaviesBouldin index is small (Bezdek and Pal, 1998). Also, in defining clusters on the
SOMs, the unified distance matrix tdatrix) was used in conjunction with the Davies
Bouldin index. The tmatrix is a visuaimap of distances between neighboring map
nodes and can help visually identify clusters (Vestano and Alhoniemi, 2000). For the
factor clusterspairwise Hotelling pvalues between cluster means were compared to
ensure that the newly formed clusters wegaisicantly different from each other
(Hammer, et al., 2009)
Cluster Interpretation Techniques

After clusters were defined, one tatkists were performed to compare water
guality parameters in each cluster to the water quality of the entire watei@exk tests

were run to determine if the mean values of water quality variables at a given cluster
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were significantly larger or smaller than the mean values of water quality variables the
entire datasetT-tests assume that the parameters being teatezla normal distribution
and equal variance (Davis, 2002). For this reason, theddodtransformed variables
were used in the comparison. Additionally, the Welch test statistic was used in cases
where variance was uneqlammeret al, 2009) Thisis used over the traditional t

test because it does not employ a pooled variance estimate.

Classification Methodology

Linear Discriminant Analysis

Linear discriminant analysig.DA) is usedn this researcko predictthe water
guality cluster membershipf any monitoring stationsased on several quantitative
spatialvariablesr el at ed t o t he s(tegphysicalwatérsheddr ai nage |
characteristics). The main objectived &fA are to determine a predictive equation that
will classify an observain based on itset of spatiaVariables and to better understand
the relationship between the discriminating variables and the clusters associated with
them Gimilar toSantosRomanet al, 2003). Stepwise discriminant analysis is a variable
selection pocess used when there are several quantitative variaibités method is
useful precursor to direct parametric LDA (SAS, 2@0D4) Variables are chosen to
enter the model according to the significance level of ttesEfrom an analysis of
covariarce (SAS20022004). The Ftest gives an indication of how well a predictor
variable discriminates between groups. Variables that exhibit the most discriminatory
power are entered first, then the second most, and so on. This continues until all
variables that meet a predetermined significance level are entered into the model.
Additionally, variables are removed if their significance level drops below the
predetermined criterion as more variables are entered into the model. For example, if the
inclusionof variable A lowers the discriminating power of variable B below the
significance level, variable B will be removed from the modemoderate significance
level of 0.10 to 0.25 is recommended by Costanza and Afifi (1979). When all variables
still in the model meet the predetermined criterion, the stepwise selection is complete
(SAS,20022004). A classification equationtisendetermined bylirect parametric
LDA, which assignsstream/river monitoringites into the determined water quality

clusters. Classification equatiorare linear combinations of the predictor variables, and
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these equationdistinguish between different grpsid of data(Tabachnick and Fidell,
1989). LDA classification equations take the following form:

6 0 0 Od 8 wd, (13)
where® is a predictor variable) is a variable coefficiengnd® is a constant.
Classification coefficients are determined with the means of the predictor vahables
and the withircluster variance covariance matpx (Tabachnick and Fidell, 1989)

o o B o (14)

These can be used as water quality prediction equations by inserting selected watershed
characteristics into the equation (SaARmsman, 2003). Stepwise LDA addect

parametric LDA were performed in SAS software.

Support Vector Maghes

Support vector machine (SVM) classification is an alternative classification
method to LDA. It is similar to another machine learning technique, the artificial neural
network (ANN). They are bottlatabasednodeling techniques, which learn
relatiorships beteen input data (explanatory variablasyl output data (response
variables)with no previous knowledge of thenderlying relationships between ttata.

The two modeling procedures even shthesame architecture (Figurg(®ecman,

2001). TheSVM has two attractive characteristics over the ANN. First, the SVM
employs the structure risk minimization (SRM) principle, rather than the Empirical Risk
Minimization (ERM). The SRM minimizes an upper bound on expected risk, rather than
the error onhie training data. This gives the SVM a greater ability to generalize, which is
the ultimate goal in creating classification models (Gunn, 1998). Secondly, the training
of the SVM is equivalent to training a linear model, but it can also identifylinear

patterns through the use of kernels (Real, 2006). The kernels acts as a hidden layer
that nonlinearly maps input data into high dimensional space. The radial basis function
kernel performs well with most types of data (H$wl, 2010).

Paameter selection is another key part of building an SVM. Essentially, a SVM
classificationtriesto maximize the margin of a hypplane that is separating at least 2
groups of data. However, complete separation of the data can lead to poor genetalizatio
therefore we employ the parameters o2 and
allows the hypeplane to not completely separate the parameters. The C parameter
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decides the tradeoff between training error and the margin of the-pigper (Reret al.,
2006). The SVM modelgsed in this work were obtained frdtfBSVM i A Library for
Support Vector Machines (Chang and Lin, @2D10) on a Matlab interface.

Cross Validation

Leaveoneout aoss validation isisedto test model performance espegiallhen
sample sizés small Often timesyalidation is performed by splitting dataset into a
training set and a testing set to derive the apparent error of a mode2@ER2004).

For this study, many of the multivariate arsdyg require a large sata sizeand dividing
thelimited number of monitoringtations into a training set and testing set was not
practical. However,leaveoneout cross validation is an alternative way to testdel
performanceand it does not require a test skt this gudy, leaveoneout cross

validation was employed on both the LDA and SVM models to test their performance.
Leaveoneout cross validation trains a SVM or LDA based eh observations then,
applies the model to the observation that was left out. Itttieefor all observations,

and the misclassification rate indicates the performance of a given model@}sS,
2004).

Cross validation served a dual purpose in training the SVM, as it indicated model
performance and aided in the selection of the paeamet C a n d -search The Gri
method as described by Hstial.(2010) was applied during SVM training. The Grid
search procedure is a straight forward procedure in which various combinations of C and
0 are used in the SVM asthe bestleress waldatibniisn at i o n
chosen. Someti mes different combinations
errors. These ties were broken by choosing the lower values of C, because it produces a
better generalization of the model.

Wilcoxon MatchedPairs SignedRanks Test

Once the classification models were built using the IDEM dataset, the next step
was to test these models on the independently collected ECWMP ddtasat/ilcoxon
matchedpairs signedanks test waasedto determine whetheéhe LDA or SVM was
able to classifghe unseen ECWMP data more accuratieyn the other The Wilcoxon
matchedpairs signeegtanks test is a non parametric test that is used to determine if a pair

of data (e.g. LDA and SVM classification accuracy) is gigantly different. SVM and
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LDA classification accuracies on the unseen data were defined for each ECWMP station
as the percentage of water quality variables whose values fell within the range of the
cluster into which they were classifiedihe null hymthesisHo, for this test was chosen

to be true ithe accuracy of LDA and SVMereequivalent. To beginhis testfirst

finds the differences between the LDA and SVM accuracies for mardieslof

ECWMP stations The absolute values of the differea@e ranked from smallest to

largest. Then a sign is assigned to the ranking based on if the difference was positive or
negative. The absolute vatuaf the ranks with the sign that appears the lagshen
summed. The sum of the ranks is the valtienhich is compared to a table of critical
values of T. If T* is greater than the critical value of T at for a given sample size at a

given significance level, thefy is rejected $iegel, 1956)
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RESULTS AND DISCUSSION

Variable Reduction

Principal Canponent Analysis

The principal component analysis (PCA) was performed otirtieeaveraged.6
water qualityvariables at the 4lDEM water quality monitoring stations in the
watershed. Before statistical analysis was conducted, the data was testech&ityno
with the ShapireNilk goodness of fit teftHammeret al, 2009. Variables that were not
normal at an U=0.05 | e-@oxpowavtansormatomsmal i z e d
(Kutneret al, 2004). After the data was transformed it was chddlr normality again
Box-Cox power transformation values and the results oStiapireWilk tests can be
seen in Appendix AlLastly, the data was scaled using the softmax transform@is,
20022004. This last stevas done to rescale the values of the 16 water quality
variables in the datasets to similar scaledreducethe effect of any outliers that
remained after normalization.

All 20 datasets were analyzed independently of one anoth&® dnt of 20
datasets four factof$actors refer to the principal componenisgre retained from the
PCA, and this was determinégl examining the Kaiser criterion and Scree f$thr,
2005) In all datasets, the first four factors explained 85% to 91% of the variance in the
data. Each factor was examined for variables with the highest contribution or loading to
the factor, and vanax rotation was used to better identify variables contributing to each
factor (Suhr, 2005). Paul at. (2006 selectedvariables with loadings over 0Oté be
associated with a given factan their work SantosRomanet al.(2003)considered
factorloadingsover 0.55, and Iscegt al.(2007) considered loadings over 0.5. For this
study, variables witfactor loadings>0.6 will be consideretb have significant
contribution tothe associated factor. Variables that didheotefactor loadinggreate
than0.6 were removettom the PCA since they could not beearlyassociated with any
of the factors (Suhr, 2005Most of the variation betweenelt?20 PCA resulteccurred
between the annual and quarterly dataset, rather than between statisteabiadi
However, statistical indicators did produce different PCA results, but these differences,

generally, did not change the interpretation of the PCA.
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The geometric mean is used as an example factor loading matrix for each of the
annual and quarterljatasets. This was done to emphabka& seasonal changes
affected variable reductiorFacto loadings matrices for the other statistical indicators
can be located in Appendix Al'he factor loadings for th@nnual geometric meafataset
are shown in Tlale 2 In the annuajeometric meadataset the first factor exphed
about 31% of the variancend alkalinity, chloride, hardness, nitrate + nitrite, specific
conductance, and sulfate hadtor loadinggreater thai®.6. These six variables
distingush themselves from the other variables because they are all transportable in
groundwateror in the case of alkalinity and specific conductance, are a measure of
cations and anions that are concentrated in subsurfacéHlenv, 1985). Therefor¢his
factor is associated with subsurface flowwhe second factor from the annuggometric
meandata set had high loadings from total suspended solids, turbidity, iron, and
temperature Based on the first three variablésis factor can be associatetth
trangort of suspendegarticlesandtheir associated components (irpihexplains about
24% of the variance in the datas&tough temperature loads high with this fagtiois
difficult to explain any exclusive dependencies between particles and temesatae
multiple other causes such aeam shading, the urban heat island, geospatial position,
point source dischargestc, can also affect temperatur@his complexity can be seen in
the seasonal datasetbere temperature loadings behaveaticdly. The third factoihas
high loadings from total organic carbon (TOC), chemical oxygen demand (COD), and
total Kjeldahl nitrogen (TKN) and accounts for about 21% of the variance in their
respective datasets. TOC, COD, and TKN are closely related éogheics and organic
pollutants in water (Hem, 1985). The fourth and final factor from the annual dataset
explains about 11% of the variance and is associated with dissolved oxygen and pH.
These variables describe the reduction/oxidation or redox camslin the wateras well
as the buffering capacity of water that is related to the underlying ge¢tiegy, 1985)
While total phosphorus did not load higlagy of the factoractor, the initial PCA runs
showed that it had loadings greater 0.5 orfitise3 factors. This indicates that total
phosphorus is a complex variable that cannot be associated simply with one factor and,
therefore had to beemoved from the findPCA of the annual geometric mean dataset
(Suhr, 2005).
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The quarter 1 (JanuaryMarch) datasets showed similar restdishe annual
dataset. Table Showsthefactor loadinggor the quarter 1 geometric mean dataset
Factor 1 had high loadys from the same subsurface flassociated variables in the
annualdata set and explaideabout 3% of the variance in the data set. The second
factor in quarer 1 was similar tthe organieassociated factor in the annual dataset.
However, it was always the second most important among statistical indicator datasets
explaining 21% to 25% dhe variance in each of the datasets. Also, total phosphorus
loaded highlyonthis factor. The high loading of total phosphorus with the organic factor
could be attributed to a winter and spring flushing phenomenon documented by &alzell
al. (2006) In that study they examined TOC that builds up during the winter and is
flushed out in high spring flows. Organic particulate phosphorus, one component of total
phosphorus, exists in the planaterial and manurhat builds up over the winter months
(Hem 1985). Since quarter 1 covers January through March, a flushing effect from high
flows in the late winter and early spring explains the high loading of total phosphorus
with the organic factor in quarter 1. The thirdttaavas similar to thearticleassociated
factor from the annual dataset. TSS, turbidity, and iron loaded highly on this factor for
each statistical indicator. Temperature, however, was never associated with this factor
during this time period (JanuairyMarch). Theparticleassociatd factor explained 19%
to 21% of the variance among the datasets. The fourth factor for the quzetanétric
meandataset was similar to the anngabmetric meadata e fodrth factor, as it was
again associated with redox conditions in the wabessolved oxygen and pH loaded
highly together in each instanc&éemperature did not load highly on any factor for the
quarter 1 geometric mean dataset, however, for the trimmed mean dataset (Appendix A),
the inclusion of temperature addedaveat tohe redoxfactor as it showed a high
negativeloading on this factorThis indicated that temperature has an opposite
correlation with dissolved oxygen and pH.also showed up as its own factor,
explaining about 8% of the variance in the dataset, fomeéndian dataset.

The quarter 2 (April June)geometric mean datasaintinued with the theme of
the annuband quarter 1 datasets. Tlbadingsfor the quarter 2 geometric mean dataset
can be seen indbles4. The first factor was the subsurfacesflassociated factor, and

explained about 3% of the variance in the dataset. The second féatdahe quarter 2
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geometic mean dataset was the orgaagsociated factor and explained about 25% of the
variance in the datasethe organieassociatedactorwas once again characterized by
TOC, TKN, and COD, howevéotal phosphorus did not load greater tBabas it did in
quarter 1 Rather its loading behavior was complex, simitarthe annual datasetgain,
it had fairly high loadingsn the first 3 &ctors(but below the 0.6 criterion), and, due to
this complexity, it wasemoved from the subsequent P&Y&uhr, 2005). Temperature
also had a high loading with the orgaagsociatediactor in quarter 2. Thearticle
associated factawas the third masmportant factorand it explained about 23% of the
variance in the dataseDnce agairthis factorincluded TSS, turbidity, and ironThe
redox conditiorassociatedactor behaved the same as it did in the annual datasit
explained about 10% afie variance in the dataset

The quarter 3 (July September) and quarter 4 (Octobédovember) PCA
results were very similar. Thdactor loadingsan be seen in Tabfeand Table 6
respectively. Like the annual, quarter 1, and quarter 2 datdsefgst factor explained
about 33% of the variance in thearter 3 and quarterdataset, and had high loadings
from the same variables related to the subsurfacedksaciatedactor i.e alkalinity,
chloride, hardness, nitrate + nitrite, specifimductance, and sulfate. However, in both
guarter 3 and quarter 4, total phosphorus loaded highly on this factor. As stated
previously, phosphorus is most commonly transported with partic@atgsarticle
associated with organic matter, which doesfiatell with the subsurface flow
characterization of this factor (Hem, 1985). In the White River watershed dataset nearly
all of the monitoring stations showed the highest total phosphorus concentrations in
quartes 3 and 4. It is likely that the contion of phosphorus to streams in the quarter
1 and 2 when flows are highegs a result of the flshing effect of overland flow. len
in quartes 3 and 4 during low flow timesphosphorus concentratiomereaselue to a
reduction in the dilution gboint source phosphorus inpuas, well as in situ biological
production Sincetotal phosphorudoes not load highly on one faciarthe quarter 2
datasetit likely represents a time of event flows with increases in patticle
associated phosphorusut also dilution from the increased precipitation andRow
groundwater inputs to stream$he second factdor the quarter 3 and 4 geometric mean

datasets explaineabout 23%of the variance in the dataselt was characterized dise
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particleasso@tedfactor, so TSS, turbidity, and iron all load highly on this factdrater
temperature also loads highly on this factor in the quarter 4 geometric mean dataset, but,
because temperature is not relategdddiclesin water, this factor is more accteby
characterized as being relatecptticlesplus temperatura quarter 4 Temperature
does not meet the 0.6 criterion for any factor in the quarter 3 geometric mean dataset.
Thethird factor explaining about 24 of the datasdbr both the quarte® and 4
geometric mean datasets is the orgaalated factor and includes, TOC, COD, and TKN.
The fourth factor, explaining about 12% of the dataset, once again describes redox
conditions in the water and includes high loading from dissolved oxygentand p
Kohonen SelOrganizing Map Results

Kohonen sekorganizing maps (SOMs) were constructed for the annual and
seasonal datasets for each statistical indicator. Before statistical analysis was conducted,
each variable was scaled using the softmax tramsftoon. This step ensured all
variables were within the range [0, 1] ardluced the effect of outlier§.he goal of the
self-organizing map was to construct a two dimensional representation of the original 16
water quality variables. The maps wereatee using a hexagonal topology and a 13
node by 11 node architecture. The mapébés 1
between 0 and 1. Then the learning algorithm was run sequentially by having each
stationdés standar di zirgds awiaputevectorphemdini t y var i a
purpose of the learning algorithm was to organize the similar water quality stations using
a technique known as vector quantizaifBojas, 1996) This process essentially projects
the water quality variables from eaclomnitoring station in 2limensional spaceThe
algorithm was run for 5000 iterations. The first 1000 iterations were a rough training
phase, which consisted of a neighborhood radius of 4 nodes and an initial learning rate of
0.5. The next 4000 iteratiomgere the fine tuning phase, and the neighborhood radius for
this phase was 1 node and the learning rate was initially 0.05 and was reduced to 0 as the
learning finished.

Two useful visualizations of the SOM are t@fied distance matrixU-matrix)
and the component maps for each individual variable. The component maps show where
each individual variable has high and low values on the map. The individual cortgponen

for the SOMs can be seenAppendix B In order to make sense of these maps, one may
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expect to see similar patterns in the maps of associated variables, such as alkalinity and
hardness. These maps aoenparabldo the PCA resultsincevariables that loaded
highly on a factor should have similar maps. Additionally, complex variables or
variables that did not have high loadings from the PCA are included in the SOM
Ultimately, all of these component maps are combined to create tietrix, which
characterizes thEuclideandistances between each node. Theatrix can be very
useful n visually clustering data, and will be discussed more in depth in the Cluster
Analysis section (Vestano, 2000). Before analyzing these SOMs, it is important to note
that each SOM must be looked at individually. Since node values on each map are
generatd randomlyeach time a SOM is generated, the locations of stations on a map
will change, but the relative distances between stations will stay the same

In order to contrast with the geometric mean PCA loading tables, the SOM
component maps for eachtbk statistical indicators in the annual datasets can be seen in
Figures 5 to §the quarterly SOM component maps are located in AppendiX Bg¢se
maps display the differences in the influence that the choice of statistical indicator has on
variable redction. By examining Figures 5 to 8, one can observe that the choice of a
robust (outliers have a minimah the case of the geometric meanno effect on the
indicator, in the case of thmedian) nortrobust (outliers potentially have aegt effect
on the indicator i.emean) or semirobust (some outliers are removed they carstill
have a great effect on the indicator i.e. trimmed mstatistical indicator has an effect
on variable reductionFor example, TSS, turbidity, and iron are all vilés whose
concentrations have outlyinmeals during high flow conditions On the other hand,
while under low flow conditions, they have relatively small concentrations. By
comparing the annuahean (norrobust statistical indicator) dataset SOM compadnen
map(Figure 5) and the annugéometric meafrobust statistical indicatodataset SOM
component magFigure8), one can observe the influence of these outlying values. For
the mean SOM component maps relatively high values of TSS, turbidity, anidaotal
are spread out among a larger group of nodes. However, gedineetric measSOM
component maps the high values for these three variables are located im monec
compact group of noded he larger spead of high node values inean datases likely

a result of the large outlying values skewing the mean to a higher value than is actually
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representativef a given monitoring station. On the other hand, those large outlying
values aralsoincluded in calculaon of the geometric mean, but theiciusion is noso
obviouslyreflected in the geometric mean SOM component maps. 3iagebmetric
meanrescales the data on a log scale while calculating the arithmetic average (i.e.,

"0Q¢ 6 Q6 DIMED ¢ 6 Q& ¢i&, theinfluenceof large outlying valuesn the

geometric mears greatly reduced. The geometric mean is advantageous in that it is able
to include all of the information from the dataset, withskéwingits value tevardsthe
high outlying valueshatonly occurduring high flows. Also, because of the aspect of
using all of the data for a given variableg geometric mean waasoconsideredo be
superior to thenedian, which only uses the malpt of the dataset. Lastly, the trimmed
meanis considered a sembbust indicator becauseattempts to dampen the effect of
large outliers by removing the highestdowest 5% of the dataHowever, the decision
of how much data to remove is arbiyraand it is susceptible to removing too much data
or not enough data depending on the scendiin influence of robushonrobust and
semtrobuststatistical indicators can be observed in most of the water quality variables.
Aside from the effect afhe choice of statistical indicatdhe same annual and
guarterly patterns seen in the PCA loading matrices were observed in the SOM
component maps. However, the component nadgmsshow that there is a more complex
relationship betweemany of thevariablesthan can be observed in the PCA loading
matrices Beginning with the varides that were characterized as subsurface-flow
associatedariableg(i.e. alkalinity, chloride, hardness, nitrite + nitrate, specific
conductance, and sulfatalkalinity andhardness have nearly identical map patterns with
the higher values otne sameside of the map and lower values on the other. Nitrate +
nitrite has a component mapnilarto those of alkalinity and hardness, but the highest
values of nitrate + nitrite arlocated in a smaller area of the map. Chloride, specific
conductance, and sulfate are also very similar to each other, but their general map pattern
differs from alkalinity, hardness, and nitrate + nitrite. For examiplthe annual mean
dataset (Figte 5), the highest values of alkalinity, hardness, and nitrate + nitrite occur
across the top half of the SOM. On the other hand, the highest values of chloride,
specific conductance, and sulfate occur, in general, on the upper left hand side of the
SOM. ltis notable that the highest values of chloride and specific conductance share the

24



same cluster of nodes f ovemdmpapentamagshiheé spot O

organicassociated factor variables (TOC, COD, and TKN) generally show the same
patten in all the annual SOMs. Although, there is a group of nodes where TOC and
COD show higher values and TKN does imothe annual median, trimmed mean, and
geonetric mean datasets (Figures 6, 7,andlIBterestingly, the component maps of
chloride, sulfée, and specific conductance appear more similartadimponent maps of

the organieassociated variables than the component maps of alkalinity, hardness, and
nitrate + nitrite. Theparticleassociated factor for the annual datasets (TSS, iron,
turbidity, and temperature) also show the same general pattern between component maps,
even though there is more variability in the temperature maps. The maps of the redox
condition variables (pH and DO) showed one small area of low values in each of the
annual conponent maps, while the rest of the maps were variable for pH and DO.
Phosphorus is an interesting variable because it did not load highly on a variable in the
PCA. Its component maps appear to be similar to both the organic associated variables
and thechloride, specific conductance, and sulfate variables of the subsurface flow
associated variables. This is a likely cause of the low loadings in the PCA, showing that
phosphorus is a complex variable.

In thequarter 1ISOM, the subsurface flovassociatd variablesxhibitedsimilar
patterngo those that were observedtite annuatlataset Again, the organization of the
SOMs for the quarter 1 datasets is similar toféiogor pattern found in the PCAxcept
greater insight into the water quality vdoi@ behavior is achieved by examining the
SOM component map3Nhile the PCA grouped water quality variables fbated
highly on a given factgan examination of the component maps allows the viewer to
more precisely observe how different water qualéyiables are behaving in relation to
each other Alkalinity and hardness have nearly identical component maps. Again,
nitrate + nitrite is very similar, even though a fewer number of nodes are associated with
the highest values of nitrate + nitrite. |I@tde, sulfate, and specific conductance once
again, have very similar component maps, with chloride and specific conductancg sharin
a Ahot s pot oSimiar organizgtion of/tleelongamessociated variables was
once again apparent. Thempnent maps of TOC and COD were almost identical and

TKN6s component map foll owed a very si mil
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phosphorus is slightly different, but follows the same general pattern of TKN, TOC, and
COD (phosphoruss usually part of the ganicassociated factor in ¢hquarter 1 PCA).
Theparticleassociated variables are alapped nearly identically. Emperature shares
similar areas of high values as the particle associated variables, but its values are much
more variable throughout tmeap. For the redeassociatedariables, there is more of

an apparent parallel between component maps in the quarter 1 SOMs than the annual
SOMs. It is still difficult to discern, but a somewhat similar arrangement of high values
can be observed betweeomponent maps. It is also apparent that the temperature
component map has organized its high and low values opposite of the arrangement of DO
and pH. This makes sense, because warmer waters will be able to hold less DO than
colder waters. For a more depth examination of the quarter 1 SOM, the component
maps are located in Appendix B.

The quarter 2 SOMs fall into the same type of organization as the annual and
guarter 1 SOMs. One notable change in the subsuttaceassociatedariables is that
the specific conductance component map has organized itself more closely to the map
arrangements of alkalinity and hardness. Regarding the orgssuciatedariables,

TOC and COD appear to have two areas of higher values on their respective maps, while
TKN only shares one of those areas of higher values. The component maps for
phosphorus, which did not exhibit a high loading on any factor in the PCA, is very

similar to the maps for TKN and somewhat similar to the maps for chloride and sulfate.
Thepartide-associated maps look nearly identical again. DO and pH are arranged in a
somewhat ambiguous but similar manner. The temperature component map is arranged
uniguelyamong all the component maps. Again the SOM component maps for quarter 2
are located il\ppendix B.

The quarter 3 and quarter 4 SOM results are, in general, the same, but differ
slightly from the other quarterly and annual datasets. Of note for the subslaface
associatedariables is that the component maps for phosphorus is mosirsimil
chloride, sulfate, and specific conductance. This visualization coordinates well with the
findings of the PCA, where phosphorus loaded highly on this factor for attistlti
indicators. The orgamiassociatedlactor variables remain consistemth the component

maps for TOC and COD being the most similar and TKN sharing many of the
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organization characteristics. Tbemponent maps for thgarticleassociated variables

are once again nearly identical. The component maps for tempexagurmrevariable,

but, in generaltheyareorganized in theane styleof the otheparticleassociated

variables. The component maps for DO and pH are probably more similar in the quarter
3 and quarter 4 datasets than in any other quarterly or annual détgaigt.the SOM
component maps for quarters 3 and 4 are located in Appendix B.

Cluster Analysis

K-means cluster analyses were performed on the datasets in order to identify
clusters oimonitoring stations that had the most similar water quality. The cluste
analyses were performed on the all of the datasets after variable reduction i.e. cluster
anal yses were performed on the retained fa
K-means method of clustering was uwéad on bo
clustering is a partitional clustering method, which allowed for the factors or nodes to
change cluster membership while the clustering algorithm ran. However, in partitional
clustering, the initialization of the cluster centroids is random antheaefore create
unlikely clusters (Rao and Srinivas, 2008). To minimize the chance of random clustering
arrangements, 20000 iteratioofsthe cluster analyses werenrin order to find the best
clustering arrangements.

Identifying Clusters

The next stp in the cluster analysis was to decide the number of clubtrs
were present in the data. Besides acknowledging that physical watershed characteristics
would affect the water quality of each stationanpriori knowledge of clusters was
known going nto the cluster analyses. Also, since the purpose of clustering the stations
is to identify areas that have similar water quality conditions, the maximum amount of
clusters was sé¢b 10 If there were more thahO clusters, it woulctreate clusters with
only one or two monitoring stations and defeat the purpose of creating generalized water
quality clusters into which, unmonitored sites could be classified. In order to help
determine the number of clusters for each analysis, the DRuvidsdin index was
examined. The DavieBouldin index helps indicate compact, well separated clusters,
which is expressed by a ratio of within cluster scatter over between cluster separations

(Bezdek, 1998). The index is calculated for each possible number of clustittse an
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best clustering configurations have a small index. Ideally, a plot of the EBwiggin
index would show a downward spike, followed by an increase in the index at the best
clustering configuration. The plots of the Davigsuldinindices can be &a in
Appendix B

These downward spikes can be seen in several plots, but in many, there is a very
dull spike or none at all. For these cases further investigation was needed to determine
cluster membership. One examplean inconclusive DavieBouldin plotinterpretation
was for the quarter 1 geometnean factoclusterswherethe DaviesBouldin index fell
sharply until 5 clusters, antlén the slope of the plot leveled gbtgure 9) Since more
than 5 clusters indicatedsmall improvement in chtier scatter over cluster separatidn
clusters were chosen ¢generallyrepresent the quarter 1 geometric mizantor dataset.
Also, because of the ambiguity in cluster selectmm i r wi s e Howererbnlta ngos t
compare the different clusters ated from the factorsTh e Ho t eValuaindigated p
whether or not cluster means were different (Davis, 2002). Most clustersligtanet
from each other at a significance levelbk 0. 0 5Resul ts of the Hot el
tests are in Appendi&. Not passing this test was likely a result of having too few
stations in a given clustefor example, the quarter 1 datasets generally had a large
number of clusters. Because of this, some clusters had very few stations and did not pass
the Hotelling s p a i r This was the anlgype.ofscenario where the clusters did
not pass the Hotellingds test, therefore,
generally created distinct clustershe final cluster assignments for the clusters
calcubted by the factorsr annual datasetire inTable 7. Additionally, the quarterly
dataset factor cluster assignments are in Appendix A

The Hot el | i nwassotusea asrawdnfgneatoty precédure for cluster
presence for the clusters createddfm t he SOMO s . Rat her, a vis
unified distance matrix (Wnatrix) combined with thé&k-means clustering method was
used to determine the best clustering configuration. FMatlices generated by the
SOM Toolbx 2.0 in Matlabare locaedin Appendix B(smaller versions of these-U
matrices can be seen in the cament maps asell). The nodes inthe U-matrix are
moret han t he nodsmne tleemepreshnethelliGtdhoéesbetwersighboring
nodeson the SOM. Red nodes on thematrix represent a relatively farther distance
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between nodes on the SQ&hdtheblue nodes represent shorter distarigeen
nodes Therefore, blue areas on thematrix represent tightly clustered nodes, and red
areas represent separation of nodeherslOM (Vestano, 2000). If only visual
examination was used, one would identify clusters by identifying areas of blue
surrounded by areas of red in theatrix. However, this procedure is tedious and
inconsistent (Vestano, 2000). Therefore, thim&angprocedure was used to cluster the
data, then possible cluster configurations were compared with the corresponding U
matrix, and the final cluster configuration was chosen. For example, the {Bai&Bn
plot for the annual geometric mean SOM shows armteavd peak at 6 clusters and 8
clusters. Both of these clustering arrangements were compared torttarly to see if
one corresponded better to the ideal scenario of tightly clustered blue nodesided
by red nodes (Figure)9 It was determined #tthe 8 cluster arrangememire closely
follows the guidelines for clustering based on thendtrix. In the 6 cluster scenario, the
large yellow cluster appears to have three differentchudtas according to the U
matrix. However, Wwen the SOM is pétioned into 8 clusters, that large yellow cluster is
broken up into those three salusters, andhe SOMmore closely follow the bnatrix.
The final cluster the numieal assignmentannual dataset SOMse in Table 8 The
numerical cluster assignntetablesfor the quarterly SOM cluers are located in
Appendix A. Also, the laster configuratioriguresfor each of the SOMs are located in
Appendix B
Interpreting the Clusters

With cluster membership determined, the next step in the analysis was to
characterize each cluster based on water quality. To do this the mean whéach
guality parameter in every cluster was compared to the mean value of that parameter
among all the stations for a given dataset. For example, the mean value of alkalinity i
cluster 1 from the annual geometric mean SOM cluster analysis was compared to the
mean value of alkalinity among all te&ationsin the annual geometric mean dataset.
Simple univariate one sided t tests were used to compare the (Deaiss 2002)
Fadlowing the assumption of normality for the t tests, the Bmx transformed water
quality datasets were used in the comparison. Additionally,-testFor equal variances

among the distribution of the cluster and the overall datasets@seviewed If this
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test indicated unequal variances at an U=0
used instead (Hammet al, 2009). If the t test indicated that a given cluster mean was
hi gher or | ower than t he menmficanaefevetthae ent i r
cluster was marked highr tow, respectively Additionally, cluster means that did not
show a significant difference from the mean were marked moderate/variable (M/V). It
was assumed that either these clusters did not differ moichtfre mean, or the
parameter values in the cluster varied so much that it could not be stated with the given
level of significance that the cluster mean was higher or lower than the mean of the entire
dataset.Since there were 40 different cluster anasyghe annual geometric mean SOM
clusters was used as an example to display the results from the cluster contgastson
and can be seen in Table 9. Appendix A contains all of the clustgr¢comparison
tables.

In addition to the t tests more galitative and visual interpretation of the clusters
can be made by examining the component map
values of each cluster. By comparing the cluster configuratioagiwenSOMto the
component mapsfdhe correspondig SOM one can make a qualitative and sometimes
more descriptive explanation of a given cluster. For example, in cluster 4 of the annual
geometric mean SOM, theést indicates that this cluster has a higher than average mean
for sulfate when compadeo the rest of the data dd@table 9. Figure 11shows the
component map of the annual geometric mean SOM next to its corresponding cluster
arrangement. By examining Figure ,ldne can see that the highest values (red/orange
nodes) otluster 4are in ony some stations (IW®, WR-248, WR279, WR293, WR
309), while the other statioms cluster 4EC-21, WLG-2, CICG-17, BL-64) have
relatively moderate sulfate values (blue/green nodes).

The clusters created from the retained factors can also give fiunsigt into
cluster descriptions. When the factors are created in the PCA, they are standardized to
have a mean of 0 and a standard deviation of 1 (3&(&22004). In order to visualize
the clusters, the factors were divided into thespeetive clustrs, and their respective
means and staadd deviations were plottedSince factors are not the reduced versions of
the original variables, these graphs will not be as descriptive as the component maps.

However, these graphs can give a quick dqatle description of a clustert-or example,
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by examining the plot for cluster 1 in the annual geometric mean factor clustering results,
one can interpret a general assessment of clugkegire12) From his box-plot, cluster
1 would be expected to haweoderate to variable concentrations of the subsurface flow
related variables, high concentrations of plaeticleassociatedariables, slightly high
concentrations of the organic related variables, and highasiable values for the redox
associated variddgs. In this example, one was able to observe that both the organic and
particleassociatedariables had high concentrations. Howeuends evident that the
particleassociatedactor differed more from the mean of thetire dataset than the
organicassociatedactor did The correspondingtest tablendicates that theparticle
and organi@ssociatedariables were higtbut it does not give an assessment of the
degree to which the organic apdrticleassociatedariables differ from the mean. &h
box-plotso f e ac h c | give theexasniher & lzettet idea Isow a certain factor is
differing from the mean of the entire datasitots of the factor means for each of the
clusters from every factor cluster analysis can be seen in Appendix B.

While describing each cluster is important, the fact that there are so many clusters
can make it difficulto interpretwhat is actually going on in the watershed. The
variability in clustering is likely a result of a combination of factors. The selectitire
number of clustershosenthe variable reduction method, the thaneeraging techniques,
and the season represented by a given dataset all add to the variability of the clusters.
The latter three are the most interesting for this resesirote he selection of the
number of clusters is based on the interpretation D&@esdin index and somewhat
arbitrary Therefore, each cluster analysis result was compared and contrasted to try to
identify patterns between quarterly datasets, statisticalatatis, and variable reduction
methods.Appendix A contains tables that show stations that always clustered together
among different statistical indicators, among different quarters, and among variable
reduction methodsBy examining clustering patternstations that are sensitive to
changes irstatistical indicator, seasonal changes, and variable reduction method can be
identified.

The fact that the clustering configurations change shows that changes in season,
statistical indicators, and linear ormimear variable reductioare critical in finding

similarity between water quality conditions at monitoring staticBantosRomanet al.
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(2003) showed that using mean and median concentrations of water quality variables did
not affect clustering. Howey, it is apparent that with the White River dataset robust
statistical indicatorsersus nosrobuststatistical indicatorplays a role in clustering. For
example, stations G8, SND4, and VF38 always cluster together among different
statistical indictors for the annual SOM clustering configurations. Additionally2|N
LST-2, MU-20, and SL¥12 always cluster together for the same datasets. However, for
the nonrobust mean and sesmbust trimmed mean datased,of these stationare put
into thesame clustersilt is only for median and geometric meartaggts, or the robust
datasets thdhese stations are different enougloéoput in separate clustersigure 13
shows this statiogluster shifting effect.In this instance, the calculation thfe statistical
indicator has likely affected cluster membieps When the mean and trimmettan are
calculated large outlying values are often included in the calculation, which can greatly
skew the output. The trimmed mean attempts to remove thetlatghsrs, but selection
of how much to remove is arbitrary and large outlying values can still be included in the
calculation. On the other handhenthe median and geometnnean statistical
indicators are calculatddrge aitlying water quality valug havea lesser impadpr no
impact for the median) on the end result

Dividing the datasets into different quarters also proved to be significant in cluster
configuration. For example, when looking among the different quarterly and annual
datasets fothe SOM geometric mean clustering configurations, one can see that stations
CIC-17 and EW239 are in the same cluster for quarters 1 and 2 (clusters 1 and 3,
respectively) and are in different clusters in quarters 3 and 4 (clusters 3 and 1,
respectively ér CIC-17 and clusters 7 and 5, respectively for2898). These station
cluster shifts can be seen in Figure Bath CIG17 and EW239 are characterized by
high levels alkalinity and hardness and low to moderate concentratitmespairticle
associatedariables in all seasons. The differences between these stations in quarters 3
and 4 are primarily between concentrations of phosphorus and sulfate. In quarters 1 and
3, both stations show low to moderate concentrations of phosphorus and Suitde.
changes occur in quarters 3 and 4 when-CIGhows a relatively high concentration of
sulfate and phosphorus while EX89 maintains the low or moderate relative

concentration of these variables. It was noted earlier that seasonal changes affect the
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phoghorustransport pathwayand could be a cause of these quarterly cluststiifts
Several more examples like this can be observed throughout the clustering
configurations.

The clustering of the factors and the SOM proved to béagityut not the same.
Many ofthe stations that consistently cluster together among different dades¢he
same in the factor clusters as theyiarthe SOM clusters. Howeveghe SOM clusters
had more consistently clustered statioRgyure 15 shows a side by side qmarison of
the annual geometric mean clusters for the factor and SOM datAsetss the different
time-averagingstatistical indicators, an average3dfstations clustered with at least one
other statioreach timeor the factor clustering arrangementdn theother handan
average of 38tations clustered with at least one other station each time for the SOM
clustering arrangements among different statistical indicateos thedifferent quarterly
and annual datasets the factor clusters averagsthf?éns that clustered with at least one
other station each time, whithe SOM clusters averageds3ations. This indicates that
the SOM was better able to detect similarities between similar stations, irrespective of the
choice of the statistical imchtors for timeaveraging of water quality variables, or
irrespective of the choice how the water quality dataset was reorganized into annual or
seasonal datasets.

In general, clustered stations tend to vary more among different quarters than
different satisticalindicators. This is evideiihe fact that an average of 36 of the 44
stations clustered with at least one other station when cluster consigieieclyamong a
single quarterly or annual datas€n the other hand, by examining station cluster
changes among the annual and quarterly dategestisthe statistical indicator waseld
constantit was determined that an average of 29 out of the 44 stations clustdred
least one other statiorThis result shows that an avera@& onore statios are sensitive
to seasonal changes than changes in the choice of statistical ind®atdrclustering
configurations also proved to be more consistent than the factor clustering configurations.
17 stations clustered with at least one other statioallf@0 datasets for the clustering of
the SOM, while only 4 stations clustered with at least one other station each time for all
20 of the factor cluster configurations. Only stations-NRand WR210 clustered
together for all 40 of the clustering condigtions. Lastly, while the tables describing
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cluster consistency in Appendix A indicate

data preparation and data reduction, each individual station should be examined in order
to understand the underlyimguses of cluster membership shifts.
Spatial Distribution of the Clusters

Each of the cluster configurations can be seékpipendix B These maps
combined with maps of the physical watershed variables can be used as an instrument to
form ideas about thelassification of these clusters. A visual inspection of the spatial
variables can offer insight into how the different cluster configurations will be classified
by thelineardiscriminant analysisLDA) and support vectanachins (SVMs). In the
aforenentioned exampleCIC-17 and EW239 were identified as sitar stations in
quarters Jand as dissimilar stations in quarters 3. The spatial variables (excegt)rainfa
do not change quarter(g.g. the types of bedrock that underlay a watershed wilkiséay
same year roundhiowever, the influence of different spatial variables on water quality
does change in different quarters
Classification

Once clusters were defined, the next step in this study was to create classification
models to predict clustenembership. Three steps were involved in classification:
define physical watershed parameters, create linear and nonlinear models, and test the
performance of these models with unseen data.
Spatial Data

Classification models are formed by using phgbigatershed attributes to predict
cluster membership based on the clusters formed froid-theans clustering of the
SOMs and PCA factors. In total, 38 physical watershed variables were considered, to
discriminate between cluster memberships. ThesaB8bles can be broken down into
9 different categories: hydrologgeomorphologivariables, climatic variables,
Ecoregios, Natural Regions, bedrock geology, point sources, land use, land use change,
and soil dainage (Table 10 These variables werd@sen because they have been
shown to influence water quality and the selected spatial data is readily available and
easily calculated in ArcGIS. This will be useful in future uses of these models.

Many of the hydrologilgeomorphologiwariables were dared directly with the

ArcHydro tool. Some of these variables are self explanatory such as the longest flow
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path and drainage area. The sum of streams is calculated as the combined length of all of
the streams (as defined by thatnalHydrologic Datagt (NHD)) in a given watershed.
Network density was the sum of streams divided by the drainage area in a given
watershed.Figure 16helps visualize the aforementioned variables as it shows the actual
NHD. The number of streams included in this datasttrimore extensive than what

was needed to delineate the monitoring station watersheds. This figure also shows the
increase in network density in the southern half of the watershed. The average slope
percentage of a given watersheds included in thelassification as wellFigure 17.

The areas of higher slope appear to be very close to the areas of higher network density.

Temperature and precipitation were the only two climatic variables included in
classification. The temperature map used is $study was developed through a
partnership of the Natural Resources Conservation Service (NRCS), the National Water
and Climate Center (NWCC), and the developers of PRISM (Paragietation
Regressions on Independent Slopes Model) at Oregon Statadityivd he temperature
map contains the mean annual temperature for the period fronr209D1Figure 1§.

The precipitation dataset contained monthly precipitation method for the same time
period and was developed by the U.S. Department of Agricul&iree the precipitation
data was monthly, raster mathArcGIS toolboxwas used to create an annual
precipitation dataset and a pretapion dataset for each quartdihe annual precipitation
map can be seen in Figure 19, while the quarterly precgitataps are located in
Appendix B. In general, precipitation and temperature values increase as one travels
south in the watershed.

The EPA defined level Ill Ecoregions were another physical watershed parameter
considered as a percentage ofagivemstah 6 s wat er shed ar ea. Twc
make up most of the White River watershed: the Eastern Corn Belt and the Interior
Plateau FFigure 20. The Interior Valleys and Hills Ecoregion also makes up a significant
portion of the watershed. Howeyenly a few stations had a percentage of this
Ecoregion in their watersheds. For this reason it was considered an outlier and not
included in the classification models. These regions were designed because the
similarities of the ecosystems in these oagi provide a framework for management,

research, and assessment of nonpoint source pollution in a given region @valds
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1998). The Eastern Corn Belt Ecoregion is primarily a rolling till plain that has extensive
corn, soybean, and livestock prodant which has affected stream chemistry and

turbidity. The Interior Plateau Ecoregion is a much more rugged terrain than the Eastern
Corn Belt. Its soils developed from the underlying sandstone, siltstone, shale, and
limestone, rather than the underlyitill of the Eastern Corn Belt. The Interior Plateau

has a mix of agricultural and forested land use (Waba@dd, 1998). Karst topography is
prevalent in some areas of the plateau, affecting ground water inputs to the streams.

An alternative reginal ecosystem designation was designed by the Indiana
Natural Heritage Data Center. Four natural regions make up most of the White River
watershed: the Central Till Plain, Bluegrass, Highland Rim, and ShawneeRitjlse
21). The Southwestern Lowlandsd Southern Bottomlands Natural Regions were also
present in some of the monitoring stations
Hills Ecoregion, these data points were considered outliers and not included in the
analysis. The Central Tilll®&n and Bluegrass natural regions make up most of the
Eastern Corn Belt Ecoregion and correspond
subecoregions. The Central Till Plain Natural Region roughly follows the outline of the
Loamy High Lime Till Plainssubecoregion. The Central Till Plain Natural Region is
primarily crop land underlain by a shallow ground water area (Fenelon, 1998). The
Bluegrass Natural Region roughly follows the-#esconsinan Drift Plains sub
ecoregion, but it is not underlaily la shallow ground water area. The Highland Rim and
Shawnee Hills Natural Regions roughly follow the outline of the Interior Plateau
Ecoregion. However, they do not correspond with theesuvegions of the Interior
Plateau despite being based on ecesystharacteristics. Special interest will be taken in
interpretation of the stepwise linear discriminant analysis (LDA), where the most
discriminatory variables will be identified and put into the model. If either of these
regional designations is momaportant in distinguishing water quality characteristics, it
may be apparent in the variables chosen by the stepwise LDA.

In addition to ecosystem based settings examined, the geological settings of each
watershed were also assessed in the classificatithe water quality clusters. Six basic
sedimentary geologic bedrock types underlay the White River watershed and were

calcul ated as a percentage of a given stat
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mix of limestone and dolomite, limestone, axraf sandstone and shale, siltstone, and a
mix of sandstone, limestone, and sh#digre 23. Geology will affect many stream
parameters such as sediment load and dissolved solids concentrations. Streams running
through areas of clastic sedimentary ®ck. sandstone, siltstone, and shale would be
expected to have higher concentrations of suspended sediment related parameters such as,
TSS. Groundwater influences will not be as prevalent here (Fetter, 2001). Streams
running through limestone and dolaenwould be expected to show higher
concentrations of dissolved solids such as carbonate and magnesium. Groundwater
influences from the Karst topography in the Interior Plateau Ecoregion, and the more
homogeneous aquifers of the Central Till Plain Natxggion will both indicate higher
concentrations of parameters like alkalinity and hardness (Fetter, 2001).

The next set of spatial variables that was included in the classification models
were different point source variables. The point sources amesidverdhe number
combined sewer overflows per square mile (CSé/rtie number o€onfined animal
feeding operations per square mile (CAFG)mand the sum of the allowed discharge at
sites in the National Pollution Discharge Elimination System (NBB) (Figure 23.
NPDES permits are given to any facility that discharges pollutants into a body of water.
Pollutants can come from municipal and froanicipal sources (industrial and
commercial facilities) and consist of toxic pollutants such as matal manmade
organic compounds to parameters such as phosphorus or total suspended solids (USEPA,
1996). The spatial parameter NPDES sum of permitted flow does not define the type of
pollutant, so it will be difficult to relate that number to specifidavajuality parameters
in a given cluster. However, CSOs and CAR@sich are alsdypes of NPDES
facilities, will be strongly related to the organic parameters in this study i.e. TKN, COD
TOC, and total phosphorus (BBA, 1996). They are also point soes of particular
concern to the White River watershed. For these reasons, these point sources specifically
are included in the classification models.

Another class of physical watershed variables was the type of land use as a
percentage of agivenstabn 6 s wat er shed. Six types of
study: urban, cultivated crops, forest, pasture/grassland/sadyltatiands, and water

(Figure 24. As evident by this map, the three most prevalent land use types are
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cultivated crops, faest, and urban, making up 54.6%, 22.8%, and 10.2% of the total

White River watershed, respectively. Pasture/grassland/scrubland, water, and wetlands
respectively make up 9.3%, 1.8%, and 1.2% of the total watershed. These variables were
derived from théNational Land Cover 2001 Dataset (Horeerl, 2004). Land use

becomes an important factor when interpreting-poimt source pollution The

agricultural and urban areas are greatly affected by anthropogenic sources of pollution.
For example, areas wippredominant cultivated crop land use will have water quality
pollution associated with nutrients applied to cropfedsizers and sediment associated

with fallow fields during winter (Fenelon, 1998). Urban araasimpacted bgmixture

of bothpoint andnon-point sourcenputs. Point sources includewerswaste water

treatment plantspdustrial waste sites, and landfills, and these sites are sources of

organic compounds, trace elements, and nutrients (Fenelon, 1998). Forested areas and
wetlandsshould be absent of anthropogenic pollution and act more as filters to water
pollution. In addition to 2001 land use, land use change between 1992 and 2001 was also
calcul ated as a percentage of a given stat
provide more accurate land cover change data, since methods of data collection changed
between 1992 and 2001 (Feyal, 2009). The land use change variables include changes
from agriculture to urban, agriculture to forest, urban to agriculture, urtfaresti, forest

to agriculture, and forest to urban.

The last set of physical watershed variables considered was soil drainage
characteristics as a percentage of a given
are: well to excessively drained, derately well drained, somewhat poorly drained] a
very poorly drainedRigure 2. This map reflects natural drainage conditions and was
created by the U.S. Department of Agriculture (USDA, 2004). Soil drainage is related to
the coarseness of a soildatine slope of the terrain. However, over half of thatévh
River wat er s he dDBbydiledrans that artéiciaky draim sthdlldwi e d
groundwater areas (Fenelon, 1998). Typically only well drained soils would allow for
shallow subsurface flowf@arameters such as nitrate. However, the presence of tile
drains in poorly drained soils will also allow for subsurface flow of these parameters
through the tile drains. For this reason, the soil drainage characteristics variable will

likely be less dective at cluster discrimination in areas that undergo artificial drainage.
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However the importance of well drained soils to subsurface flow in areas without
artificial drainage is sufficient to include it in the classification models.
Linear DiscriminantAnalysis

Linear discriminant analysis was the first method used to create classification
eguations based on spatial variables and cluster membership as defined by the clustering
of the PCA factors. Stepwise linear discriminant analysis (LDA) was usegratude to
creating the linear discriminant equations. This step helped identify the most
discriminatory variables and reduces the problems caused by multicollinearity. The LDA
assumes multivariate normality, but violations of this assumption afatabas long as
nortnormality is not caused by outliers (Tabachnick and Fidell, 1989). For this reason,
all spatial variables were initially standardized using a logistic softmax transformation to
reduce the effect of outliers. Variables were examinethie absence of outliers before
they were inserted into the stepwise LDA. Stepwise selection was used at a 0.10
significance level. It must be noted that stepwise selection is not perfect because it
selects variables solely on statistical criterisheathan theoretical criteria (Tabachnick
and Fidell, 1989). Therefore, caution must be taken in the interpretation of the results.
The variables selected in the stégml. DA are in Table 11

Certain variables were selected more often than othersgaatioof the spatial
variables. According to the stepwise LDA, the following variables were significant in at
least half of thenalyses Interior Plateau Ecoregion, NPDES, Highland Rim Natural
Region, Shawnee Hills Natural Region, Water, Cultivated €rapd Forest to Urban
land use change. Of these, 1 is an Ecoregion, 1 is a point source, 2 are Natural Regions, 2
are land use variables, and 1 is a land use change variable. The stepwise LDA indicates
that among the Ecoregions the areas off of thegBaslorn Belt Ecoregion are most
discriminatory i.e. the Interior Plateau. Further, the Highland Rim and Shawnee Hills
Natural Regions, which make up parts of the Interior Plateau, are also very
discriminatory. Although linking the NPDES variable to speevater quality variables
is impossible, it is significant in discriminating between water quality clusters. Of the
land use variables, water and cultivated crops, the cultivated crops presence makes sense
in that it will add to pollutants to a stredmm herbicide and pesticide use (Fenelon,

1998). The inclusion of the@ercentagevater variablewhile technically a land use
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variable,couldindicate stream density or the presence of lakes and reservoirs in a given
watershed. Since there are sevezakrvoirs in the watershed, this variable could also
indicate the influence of reservoirs acting as sinks for several of the water quality
variables. Théand use change variable of forest to urban shows that the development of
previously forested land baffected water quality, and can help distinguish cluster
membership.

While some variables showed the most significance in distinguishing cluster
membership, many variables were oftentimes removed during the stepwise LDA. The
following variables were ghificant according to the stepwise LDA in less than a quarter
of the datasets: Network Density, Slope Percentage, Precipitation, Eastern Corn Belt
Natural Region, CSO/rhilmpervious Surface, Gray Shale, Limestone,
Limestone/Dolomite, Siltstone, Bluegealatural Region, Urban to Forest land use
change, Urban to Agriculture land use change, Forest to Agriculture, Well to Excessively
Drained Soil, and Somewhat Poorly Drained Soil. These variables were likely
inconsequential to water quality or redundaiRbr example, land use change from urban
to another land use has not been nearly as prevalent, nor as consequential in the White
River watershed as changes from agriculture to urban or forest to urban land use, which
were significant in 9 and 12 of the 80t e p wi s perfotmadA énterestingly, the
ecoregions and naturagions in the north eastern section of the watershed i.e. Eastern
Corn Belt Ecoregion, Central Till Plain Natural Region, and the Bluegrass Natural
Region proved to be less significabhdéstinguishing water quality clusters than their
counterparts in the south central area of the watershed i.e. Interior Plateau Ecoregion,
Highland Rim Natural Region, and Shawnee Hills Natural Region. These variables are
inversely correlated, and theoe¢, inclusion of all of these variables would be redundant.
Overall, the bedrock geology was inconsequential at distinguishing water quality clusters.
It is likely that the changes in bedrock geology and the resulting effects on water quality
were picke up by the ecoregions and/or the natural regions insteaditionally, likely
due to artificial drainage, natural soil drainage characteristics were not significant in
many of the analyses. The CSO variable was likely redundant with the NPDES taking
most of the credit in discrimination of the clusters. Of the climatic variables,

precipitation was mostly inconsequential while temperature, which follows a similar
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spatial pattern to the precipitation, was significant oufof 20 ofthe analyses. The
hydrologic variables, normally a function of stream size or terrain, showed up a moderate
amount of times in the analyses, with drainage area the most common with nine
appearances and slope percentage the least common with only 1 appearance in all of the
stepwise LDAs.

Variable selection also showed some interesting patterns between quarterly

datasets. The cluster analysis indicated that several stations were affected by quarterly
changes. By examining variable selection in the quarterly datasetj\img grocesses
of these changes may loeae evident. For example, therdst land use variable only
shows up in 8 of the 20 stepwise LDAs. However, it was significant in all 4 of the
guarter 1 datasetsO6 anal ysesalargefirblais i ndi c a
determining water quality in quarter 1 than in other quarters. The most common
variables (significant in at least 3 out of 4 stepwise LDAS) in quanesré Drainage
Area, Temperature, Interior Plateau Ecoregion, NPDES, Gray Shalenge Hills
Natural Region, Forest, and Grassland/Pasture/Scrubland. In quarter 2 these variables
were Interior Plateau Ecoregion, NPDES, Highland Rim Natural Region,
Grassland/Pasture/Scrubland, and Forest to Urban land use change. In gtreeter 3
variableswere Longest Flow Path, Temperature, and Water. In quarter 4 these variables
wereDrainage Area, Interior Plateau Ecoregion, NPDES, High Rim Natural Region, and
Shawnee Hills Natural Region. In all but quarter 3, there was at least ogstenos
based region among the most common spatial variables. Whether a Natural Region or
Ecoregion, the ecosystem based regions proved to be a good sepfachisters.
Additionally, variables related to stream sizee. drainage area and longest flpath
were most common in all but the quar?eanalyses. Temperature provede a
discriminant variable almost exclusively in quarters 1 aneé8sentially winter and
summer, respectively. The land use variablesegenerally unpredictable as to whi
onewas moresignificantduringthe stepwise LDA. Only forest in quarter 1 and
grassland/pasture/scrubland in quarters 1 andr2significant in at least 3 stepwise
LDAs in each respective quarter.

Some of these resulgere also unexpected. Fexample, NPDES waes

common variable in quarters 1, 2, and 4, but only showed up as significant in one of the
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stepwise LDAs among quarter 3 data sets. The White River watershed generally follows
a pattern of high flows in the winter and spring i.e. qudrtend quarter 2 and low flows

in the summer and fall i.e. quarter 3 and quarter 4 (Fenelon, 1998). Point sources will
have a much greater impact on stream water quality in low flow periods than in high flow
periods, and nepoint sources will be the masource of pollutants during high flow

periods (Fenelon, 1998). This study mainly focuses orpadmt sources, but does

include 3 point source variables with the goal of capturing their effect on quarters 3 and 4
i the low flow period. However, the paisource variables wersore oftersignificant

in quarters 1 and 2 than they were in quarters 3 and 4. This reinforces the caution one
must take in the interpretation of these statistically selected variables (Tabachnick and
Fidell, 1989).

Once variableselection was complete, normal parametric linear discriminant
analysis was performed on the selected spatial variables in an attempt to classify stations
into their assiged cluster membershid.able 12shows that problems with
multicollinearity or singlarity are unlikely since the pooled covariance rank is equal to
the number of variables in every LDA (Tabachnick and Fidell, 1989). The LDA created
classification equationfor every possible cluster. These classification equations are
analogous to muftle regressions, with cluster score acting as the dependent variable and
the spatial variables acting as dependent variables. Each score is therefore a linear
combination of the constant and each coefficient multiplied by its given spatial variable.
Forexample, the classification equation for the annual geometric mean dataset can be
seen in Table 13The classification equation that results in the highest score indicates
cluster membership for a given watershed based on its spatial variabkes
classification equations for the all of LDA datasets are located in Appendix A.

In order to test the accuracy of these models leanesout cross validation was
used. Another method of testing accuracy of the model would be to split the data into a
trainingset and a testing set. However, with a small sample size (n=44), it was
determined that cross validation would provide a more accurate reflectooded
accuracy. Table 1ghows the percentage of stations correctly classified after cross
validation. Anong all models, the quarter 2 geometric mean and quarter 2 trimmed mean

models have the highest accuracy, by correctly classifying 40 of the 44 stations (90.9%).
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The quarter 4 trimmed mean model performed the worst, by correctly classifying only 27
of the 44 stations (61.4%). The average cross validation accuracy was 77.4%, or, on
average, about 34 of the 44 monitoring stations were correctly classified after cross
validation.

Support Vector Machine Results

Support vector machines (SVMs) were used tmamplish the same goal of the
LDA: classification of water quality clusters based on physical watershed attributes.

However, the SVM differs from the LDA in that it can express-lear relationships
between the spatial parameters and the clusteifdatien scheme, whereas the LDA is
simple a linear combination of discriminating spatial variables. Additionally, the SVM
wasused to fornclassification models based on the clusters formed fromadhéinear
SOMs. Theperformancef the support vectanachine was based on the selection of
three parameters: kernel type, a regul ari

Kernel selection was the first step in constructing the SVM. The radial basis
function (RBF) kernel was chosen for severalsans. First, it can perform the same
tasks as the linear kernel, but can also deal withlinear class and feature relationships.
Secondly, the RBF comes with less numerical difficulty and has fewer hyperparameters
e.g. C and o t oynamiakkérnewWhstethal, 2010R rn genleral, the
RBF kernel selection is most appropriate for the given problem and expertise of the
practitioners (Hset al, 2010).

The selection of hyperparameters C and
grid-sea c h . This method optimizes the paramet
leaveoneout cross validation. The goal of <cho
find a balance between building a model that is too general and a model thatfisteder
for the training data (Reet al, 2006) . Di fferent combinatio
ranging from 0.1 to 1000 and 0.0001 to 10, respectively, were used in the model. Values
of C and 92 were chosen f r ovalidatidnacuraded el s t ha
(Table15) (Hsuet al, 2010).

Feature selection was the next step considered in building the SVM. Stepwise
LDA was used in the linear analysis to prodacaibset of predictor variablégywever,

there is currently not a standardized methar variable selection in SVMs. Chen and
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Lin (2006) proposed several feature selection strategies. Initial trials using their proposed
F-score + Random Forest feature selection strategy did improve model accuracy on this
dataset. Kartouat al.(2006)used an optimal feature selection strategy where all

possible combinations of 9 different features were selected. This resulted in only
marginal improvement in their cross validation accuracies, and this technique did not
seem pract i c asewheretherbdares38 difterend feabuses. dNilssah

(2006) showed that, while feature selection techniques have improved classification at
low dimensions with features << samples, there is no such improvement at high
dimensions. Given the high dim&onality of this data set, it was determined that feature
selection was an unnecessary step.

Table ¥ summarizes the performance of the SVM models according to-leave
oneout cross validation accuracy. The best performing SVM was the annual mean
datasetand it correctly classified 41 out of the 44 stations (93.2%) using-tesyeut
cross validation. The worst performing model was the quarter 3 median data set, which
only correctly classified 27 of the 44 stations during cross validation. The aveosge
validation accuracy among all the models was 78.9% for the SVM models.

Comparison of SVM and LDA

Overall, the SVM slightly outperformed the LDA with an averagess validation
accuracy of 79% to 77.4%. However, for different quarterly datas®# occasionally
outperformed the SVM. SVM outperformed LDA in the annual, quartquarter 3and
guarter 4 datasets with average cross validation accuracies of 84.6% to 76.7%, 79.5% to
74.4%,78.4% to 77.8%and 77.8% to 69.9%, respectively. HoweldDA outperformed
the SVM in quarter 2 witlinaveaage cross validation accurace88.1% to 77.8%.

From these cross validation accuracies, it is difficult to discern whether the SVM or the
LDA models have greater predictor power.

In additiontocrossal i dati on accuracies, the model
resubstitution can be examined station by station to compare SVM and LDA models.
Resubstitution differs from cross validation in that all of the stations are simply input
back into the model. Thereforéjs expected that the model will perform well since it
has seen all of this data already. However, by examining which stations are classified

incorrectly among the different models allows the user to identify possible weaknesses in
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the model. The mosbonmonly misclassified stations for the LDA were: -EC WR

319, FG26, CIG17, WR279, and EW79. For the SVM the most commonly

misclassified stations were: EW68, EG7, and FC7. All of these stations were
misclassified in at least 4 of the modelstlee LDA and SVM, respectively. Table 16

shows all of the misclassified stations, and the clusters from which they were
misclassified. Initially patterns among spatial variables were examined to see if a
particular type of station was likely to be massified, such as stations with relatively

small drainage areas or high urban land use. However, no pattern like this was apparent.
Most misclassifications occurred when clusters were spatially close together.
Additionally, smaller clusters were oftelustered into larger clusters. Unbalanced

clusters can cause a bias towards classification into the larger clusters for LDA and SVM
(Tabachnick and Fidell, 1989, Targal, 2002). For example, in the quarter 1 geometric
mean SVM model misclassified EC EG7, FGO0.6, FG7, and WR319, all into cluster

7 from their respective clisrs. By comparing Table Hhdthe spatial distribution of

the quarter 1 geometric me&@M clustersin Figure 14 pne can observe that all of

cluster 6 i.e. EQ, EG7, andFC-0.6 and cluster 4 i.e. F€and WR319 have been

classified into the spatially nearby and larger cluster 7. Despite, the models not being
perfect, both the SVM and LDA appear to do a good job at classifying stations into the
created water quality statis based on physical watershed parameters.

Testing Models

Once these classification models were develpeifinal step in this process
was to see how well these models performed on unseen data. However, in order to
include as much information as pids in creating the models, all of the IDEM
monitoring stations were used as training data and no stations from this dataset were left
over for testing. This problem was solvedusyng water quality datasets of Eagle Creek
Watershedtollected and publiged bythe Center for Earth and Environmental Science
(CEES) at IUPUI. The Eagle Creek WatersiAdthnce (ECWA) has been conducting
monthly monitoring at 11 different stations in the Eagle Creek watershed from March
20071 present (March 2010 was thetlapdate to the dataset at the time of this study).
Within the IDEM dataset, the Eagle Creek watershed is already represented by 3 stations:

EC-1, EG7, and EG21, and one would expect the performance of these stations to be
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similar to those already itis watershed. However, there are some differences

between the ECWAites and the IDEM sites that mustdzknowledged. First, the

ECWA sampling focuses on a much smaller area, and therefore many of the watersheds
are smaller than those in the IDEMtdset Figure26). Additionally, all of these stations

are located directly upstream of the Eagle Creek Reser@oity ECWMPR03 and
ECWMP-04 are larger than any of the watersheds in the IDEM dataset. These two
watersheds are very similar to the-2Csite, which is also upstream of the Eagle Creek
Reservoir Also, there is less historical water quality data in the ECWMP dataset, since
sampling started in 2007 rather than 1991. This will have a great affect on the impact of
land use change on wateradjty. Additionally, only 14 of the 16 original water quality
variables from the IDEM dataset are included in the ECWMP dataset.

Consistency was the key in preparation ofgihgsical watershegarameters.
Watersheds for each ECW#Aonitoring station wes delineated using the Arc Hydro
tool. The samehysical watershed parametarsTablel1 were described according to
the defined watershed for each station. Spetiahtion was paid to scaling these spatial
parameters. Scaling of the original waked parameters was done to reduce numerical
difficulties in calculations and so that parameters in high numeric ranges did not
dominate those in small numeric ranges (Hsu, 2010). I&ssification to work, the
ECWA watershed parameters had to be in #raesscale as the original dataset. In order
to do this each ECWMP station was scaled withdéheriginal IDEMone at a time using
the logistic softmax transformatio.herefore, the scaling of variable was anptished
by applying equation {&o the 44DEM water quality variables plus an additional set of
ECWA water quality variablesBy doing tis one at a time, the new ECVéfations
were not affected by values of ot 8CWA stations, and were ready to be put into the
respective SVM and LDA models.

Although the ECWAstations are confined to a small area, there is some
variability among physical watershed characteristics. Land use, soil drainage
characteristics, point sources, and bedrock geology exhibited the most spatial variability
among the watrsheds. Figurea7 to 30 show the variability in th& CWA watersheds of
land use, bedrock geology, soil drainage, and point soussgectively. All of the

ECWA watersheds lie in the Central Till Plain Natural Region and the Eastern Corn Belt
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Ecoregim. Also, because of the small area there is little variation of climatic and
hydrologic parameters.

ECWA site classification was performed by simply inserting the scaled spatial
data for each watershed into each of the LDA and SVM models. The outesitige/
cluster membership predictions and posterior gbdlly estimates for each ECWsite.
Tables17 and 1&how the classification results of the LDA and S¥hhual dataset
models, respectivelfThe results for all of the datasets are located in Apipeh). The
posterior probability estimates for the LDA and SVM are computed basewss
validation (SAS, 2004Chang and Lin, 2001)These probability estimates indicate the
percentage of tinga given ECWA station was classified into a given cludteing cross
validation The cluster withargestprobability estimatevas the clusteinto whichthe
ECWA station was classifiedn order to evaluate the performance of ¢lassification
models, the ECWAwvater quality parameters were compared tdEHeM water quality
paraneters in the cluster each ECVgfation was assigned té spatial comparison of
theannual geometric mean LDA and S\assificationcan be made in Figures 31 and
32, respectively.In general these two models classified the ECWaAi@ns into clusters
thatare located in the northern haffthe White River watershed, which is in accordance
to the location of the Eagle Creek watershed. Another interesting occurrence between
these two models was that the SVM model classified ECY¥&#tos ECWMRO03 into the
same cluster that the IDEM station 2C belonged to. However, the LDA model
classified ECWMPO3 into a different cluster than the cluster that containe@ ECThis
is interesting because EX1 and ECWMRO3 are nearly identicalatersheds, and one
would logically assume that they would cluster together. In addition to a spatial
comparisona guantitative comparison between water quality at each ECWA station and
the water quality of the respective clusters into which they wassifled was
performed.To do this, the range tfe IDEMwater quality parameter values for each
predefined cluster was considered. Then it was determinesel H@WAs t at i ons 0
guality parameter values fell within the range of the cluster formihiwas classified
into. The percentage of variables within the cluster range for eacH wasléhen
calculated.Table 19shows theresultsfor this test for the annual dataset mod&l$uster

accuracy results for all of the models can be found ineAdix A.
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Lastly, the performance of the SVM and LDA models were compared based on
their respective cluster range accuracies wighwhicoxon matchegbairs signeganks
test. The cluster range accuracy was a measure of how similar the water qualiya giv
ECWA was to the water quality of the cluster into which the given station was assigned.
For each model and aach ECWA station the percentagde@WA water quality
variables that fell within the minimwmaximum range of the IDEM water quality
variables in the assigned cluster definddster range accuracyl.he Wilcoxon matched
pairs signedanks test is a nonparametric test that compares the aglaistgr accuracies
of the ECWAstations for corresponding SVM and LDA models e.g. Annual Mean SVM
modeland the Annual Mean LDA model. It ranks the magnitude of the difference, and
indicates if one model is superior to another (Siegel, 1956). The level of significance fo
this test wa sshousthe deBigion matriX erdateceby thedresultshef t
Wilcoxon matcheepairs signeedanks test. According to this test, the SVM model had
better success with cluster range accuracy for the annual mean dataset, the quarter 1 mean
dataset, the quarter 3 mean dataset, the quarter 1 trimmed mean datgaati¢n@
trimmed mean dataset, and the quarter 3 trimmed mean dataset. The LDA had better
success with only the quarter 2 mean dataset and quarter 2 median dataset. Neither the
SVM nor LDA models had an advantage for the remaining 12 datasets. Tiee dnge
accuracy and Wilcoxon matchgairs signeganks test gives a slight advantage to the
SVM models over the LDA models.
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CONCLUSION

This study investigated different methods to construct linear andimear
empirical classification models. Tlsame set water quality monitoring stations were
represented by different datasets that reflected differentairaeaging techniqueby
using statistical indicators such as mean, median, atc)temporal changes in water
guality at different time scak (e.g. annual and quarterlyjor each of these datasets,
water quality monitoring stations were clustered into groups. This was accomplished
only after the dimensions of the original water quality variables were reducedausing
linear variable reduatn methodPCA, and anonlinear variable reduction method,

SOM. The PCA identified the 4 most important factors representing water quality, and
the SOM projected the water quality variables-dirdensional spaceBased on the

PCA, the water quality vaables could be broken down anfour groups: subsurface
flow-associated varides, organicassociated variables, sedimastsociatedariables,

and redox conditiorassociated variables.

Clustering based on the PCA factors and the SOM showed that &toghicsl
indicator and the quarter of the year a water quality sample was taken affected cluster
membership. However, the differences in clustering between quarterly datasets showed
that temporal changes had more of an effect on cluster membershipenNotding in
the streams in different seasons was shown to be one of the drivers causing the cluster
membership shifts. There was also a difference noticed in the clustering of the SOM and
PCA factors. It was noted that the clusters created by thesaOfdss statistical
indicators and different quartengere less variable than those created by clustering the
factors.

After clustering, LDA and SVM were then used to create empirical classification
models based on physical watershed data and clustebengimp. These models were
applied to unseen data from the ECWAhe Wilcoxon matchegairs signedanks test
showed that the SVM models classified tH@&VEA stations into clusters that more
accurately reflected their water quality conditions in 6 oihef20 possible models
when compared to the equivalent LDA model. Conversely, the LDA outperformed the
SVM in 2 out of the 20 possible models. In 12 out of the 20 models neither the SVM nor
LDA did a beter job at classifying the ECW#tations.
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The objetives of this study were to compare the models that were built based on

(1) statistical indicator, (2) annual or quarterly data, and (3) a linear dimaam model.

The choice of statistical indicator did appeamfluence cluster membership of sealer

of the water quality monitoring stationgdditionally, in classification, the geometric

mean based models had an average cross validation accuracy of 80.2% compared to an
average of 77.7%, 77.5%, and 78.6% for the mean, trimmed mean, and median models
respectively Although the geometric mean did not greatly outperform the other
statistical indicators, it is likely the most effective technique for time averaging long term
water quality data, because of its ability to include all of the informatam & given

dataset and reduce the influence of outlidi¢hile dividing data into quarterly subsets
shifted cluster membership for many stations, this did not necessarily improve
classification. In fact the annual models had the second best averageccrlossy error
when compared to the quarterly models. Lastly, SVM slightly outperformed the LDA
according to the average cross validation accuracy among all the models. The average
cross validation accuracies for the SVM and LDA were 79.7% and 77.4peatevely.
However, the SVM outperformed the LDA in the Wilcoxon matepatts signed rank

test, as well. In general, this study achieved its best results when usingdjimeaon
classification model based on water quality data that was time averaggdhssi

geometric mean.

Limitations in this study largely resulted from data limitations. All of the data
included in this study was collected without this specific study in mind, and therefore, it
did not necessarily conform to the demands of this st&dy.example, the land use
change parameters reflected land use change fromi 18921, while the IDEM water
guality data had been collected from 1992008. Additionally, the ECWAest set of
data was collected from 20072010, therefore comparingdabe two datasets must be
done with knowledge of this in mind. Ideally, the dataset woule had larger sample
size (e.g. #150) at sites randomly located throughout the watershed. This would have
better met sample size recommendation for the PCA andndAallowed for the dataset
to be divided into training and testing for the LDA and SVM with@atricing the
model learning.Furthermore, research is ongoing in the field of machine learning and

future developments in SVM techniques will likely leachtore accurate models.
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TABLES

Table 17 Water quality variables selected for analysis

Alkalinity as CaCQ (mg/L)

Nitrite + Nitrate (NQ + NOs) (mg/L)

Total Organic Carbon (TOGmng/L)

pH (SU)

Chloride(mg/L)

Total Phosphoruéng/L)

Chemical Oxygen Dmand (COD)
(mg/L)

Total Suspended Solids (TSS)
(mg/L)

Dissolved Oxygen (DOJmg/L)

Specific Conductance (SC)e S/ ¢

Hardness (Ca + Md)ng/L)

Sulfate (SQ) (mg/L)

Total Iron(mg/L)

Water Temperaturék)

Total Kjeldahl Nitrogern(TKN)
(mg/L)

Turbidity (NTU)
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Table 21 Annual Geometric Mean Datasef-actor Loadings;i D N L 0

variable did meet the 0.6 loading criterion on any factor

Alkalinity 86 -32 -25 14
TOC -6 3 95 -5
Chloride 82 -4 45 20
COD -3 39 90 7
DO 16 -23 26 82
Hardness 91 -30 -17 11
TKN 30 37 84 12
NO2 + NO3 83 -10 -19 7
pH 12 10 -12 89
Total P DNL DNL DNL DNL
TSS -4 97 15 -2
SC 95 -11 22 14
Sulfate 81 19 35 -9
Temperature -18 75 40 16
Turbidity -16 94 11 -4
Iron -14 94 10 -21 Final Communality
Eigenvalue 4.712 3.878 3.208 1.663 13.46
% Variance
Explained 31.4 25.9 214 111 89.73333333

Table 31 Quarter 1 Geometric Mean Datasefactor Loadings;i DN L 0
variable did meet the 0.6 loading criterion on any factor

Alkalinity 91 -11 -31 11
TOC -10 96 6 -9
Chlorid e 79 51 -11 -1
COD -3 92 32 -11
DO -11 -10 -25 84
Hardness 92 -10 -30 14
TKN 37 84 29 -12
NO2 + NO3 73 -35 2 25
pH 30 -10 -22 71
Total P 42 63 57 -4
TSS -8 18 90 -29
SC 91 27 -9 3
Sulfate 79 40 5 -23
Temperature DNL DNL DNL DNL
Turbidity -22 29 87 -18
Iron -32 8 85 -17 Final Communality
Eigenvalue 4.898 3.653 3.116 1.541 13.208
% Variance
Explained 327 244 208 103 88.05333333
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Table 47 Quarter 2 Geometric Mean DataseFa ct or Loadi ngs; ADNLO i ndi
variable did meetthe 0.6 loading criterion on any factor

Alkalinity 88 -25 -24 16
TOC -6 89 -3 -7
Chloride 80 46 -24 8
COD 1 91 34 1
DO 34 26 -40 63
Hardness 92 -22 -23 13
TKN 33 85 36 6
NO2 + NO3 71 -43 11 24
pH 7 -3 6 92
Total P DNL DNL DNL DNL
TSS -8 26 93 -3
SC 91 12 -16 12
Sulfate 82 36 4 -20
Temperature -20 75 37 22
Turbidity -23 16 93 5
Iron -12 19 95 -13 Final Communality
Eigenvalue 4.716 3.74 3.376 1.476 13.309
% Variance
Explained 314 24.9 225 9.8 88.72666667
Table 57 Quarter 3 Geometric Mean DataseFact or Loadi ngs; ADNLO i ndi

variable did meet the 0.6 loading criterion on any factor

Alkalinity 81 -26 -39 13
TOC 1 -8 95 -5
Chloride 83 0 38 27
COD -3 38 90 18
DO 14 1 19 90
Hardness 90 -25 -26 5
TKN 23 37 83 28
NO2 + NO3 84 -14 -12 -1
pH 12 13 1 91
Total P 71 30 48 11
TSS -2 96 20 15
SC 94 -7 21 16
Sulfate 82 21 34 2
Temperature DNL DNL DNL DNL
Turbidity -11 96 10 8
Iron -11 97 11 -5 Final Communality
Eigenvalue 5.044 3.368 3.274 1.911 13.597
% Variance
Explained 33.6 225 21.8 12.7 90.64666667

53



Table 6 T Quarter 4 GeometricMean DatasetFra ct o r Loadi ngs; ADNLO ind
variable did meet the 0.6 loadig criterion on any factor

Alkalinity 78 -40 -33 13
TOC -5 5 96 -13
Chloride 86 2 36 10
COD -1 37 91 0
DO -2 -29 3 88
Hardness 87 -31 -25 14
TKN 35 40 79 4
NO2 + NO3 83 -3 -12 7
pH 17 10 -10 89
Total P 67 40 44 -1
TSS 2 96 13 1
SC 96 -5 17 6
Sulfate 83 23 24 -14
Temperature 24 73 31 -5
Turbidity -18 93 18 -1
Iron -21 88 14 -23 Final Communality
Eigenvalue 5.136 3.973 3.138 1.707 13.955
% Variance 321 248 196 107 87.21875
Explained
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Table 77 Annual Factor Cluster Assignments

BL-.7

BL-64

BWC-4

CiCc-17

EC-1

EC-21

EC-7

EEL-1

EEL-38

EW-1

EW-168

EW-239

EW-79

EW-94

FC-0.6

FC-26

FC-7

FR-17

FR-64

GC-8

IN-2

IWC-9

LST-2

MC-18

MC-35

MU-20

SGR-1

SLT-12

SND-4

VF-38

WLC -2

WR-134

WR-162

WR-19

WR-192

WR-210

WR-248

WR-279

WR-293

WR-309

WR-319

WR-348

WR-46

WR-81
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Table 87 Annual SOM Cluster Assignments

BL-.7

BL-64

BWC-4

CiCc-17

EC-1

EC-21

EC-7

EEL-1

EEL-38

EW-1

EW-168

EW-239

EW-79

EW-94

FC-0.6

FC-26

FC-7

FR-17

FR-64

GC-8

IN-2

IWC-9

LST-2

MC-18

MC-35

MU-20

SGR-1

SLT-12

SND-4

VF-38

WLC -2

WR-134

WR-162

WR-19

WR-192

WR-210

WR-248

WR-279

WR-293

WR-309

WR-319

WR-348

WR-46

WR-81
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Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |

Variable Datasé Clustered 1 5 3 4 5 6 7 8 9 10
Alkalinity Annual Geomean SOM M/
Total Organic Carbon Annual Geomean SOM M/V M/
Chloride Annual Geomean SOM _ M/V
Chemical Oxygen Demand Annual Geomean SOM M/V MV MV
Dissolved Oxygen Annual Geomean SOM M/V M/V - M/V
Hardness Annual Geomean SOM _
Total Kjeldahl Nitrogen Annual Geomean SOM M/V M/V M/V
Nitrate + Nitrite Annual Geomean SOM - M/V
pH Annual Geomean SOM M/V M/V

Total Phosphorus

Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Annual Geomean SOM
Annual Geomean SOM
Annual Geomean SOM
Annual Georaan SOM

Annual Geomean SOM
Annual Geomean SOM
Annual Geomean SOM

M/V MV
S
MV
M/V MV
MV
MV




Table 107 Physical watershed variables considered for analysis in the LDA and SVM

Physical Watershed Variables

Hydrologic Variables

Longest Flow Path, Network Density, Sum of
Streams, Drainage Area, Slope %

Climatic Variables

Mean Annual Temperature, Meamnual
Precipitation/Mean Quarterly Precipitation

Ecoregion Variables

% Eastern Corn Belt, % Interior Plateau

Natural Region Variables

% Central Till Plain, % Bluegrass, % Highland
Rim, % Shawnee Hills

Bedrock geology

%Gray Shale, % Limestone,
%Limestore/Dolomite,
%Sandstone/Limestone/Shale, %Siltstone

Point Sources

Confined Feeding Operations (CAFOfjni
Combined Sewer Overflows (CSOfl’ni
National Pollution Discharge Elimination
System sum of flow (NPDES/R)i

Land Use (2001)

%Urban, %Forest, %Cultited Crops,
%Grassland/Pasture/Scrubland, %Wetlands,
%Water

Land Use Change (1991 2001)

%Urban to Forest, %Urban to Agriculture,
%Agriculture to Urban, %Agriculture to Forest
%Forest to Urban, % Forest to Agriculture

Soil Drainage

Well to Excessively Pained, Moderately Well
Drained, Somewhat Poorly Drained, Poor to
Very Poorly Drained, Impervious Surface
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Table 117 Variable selection from stepwise LDA

Interior Plateau, Drainage Area, Cultivated CropsvB8tee Hills,
Annual Mean Moderately Well Drained, CAFOs, Temperature, Forest to Urbal
Water, Agriculture to Urban, Highland Rim
Highland Rim, NPDES, Cultivated Crops, Slope, Forest to Urbal
Water, Precipitation, Agriculture to Urban,
Grassland/Pastui®crubland, Wetlands, CAFOs, Agriculture to
Forest, Sandstone/Limestone/Shale
Agriculture to Urban, Forest to Urban, Cultivated Crops, Modere
Well Drained, Sum of Streams
Highland Rim, NPDES, Precipitationrhhan, Agriculture to Urban,
Wetlands, Urban to Agriculture, Sandstone/Limestone/Shale,
Eastern Corn Belt
Forest, Interior Plateau, Longest Flow Path, Temperature,
Sandstone/Limestone/Shale, NPDES, Poorly Drained, Drainage
Area, Urban to Agricultue, Gray Shale, Water, Network Density,
Grassland/Pasture/Scrubland
Forest, Interior Plateau, Longest Flow Path, Water, Forest to Ur
Network Density, Cultivated Crops, Agriculture to Forest, Shawr
Hills, Poorly Drained, CAFOs, CSOs, Temptera,
Grassland/Pasture/Scrubland, Bluegrass, Gray Shale, Highland
Temperature, Interior Plateau, Cultivated Crops, Shawnee Hills,
Q1 Trimmed Mean Forest, Forest to Urban, Agriculture to Forest, Central Till Plain,
Gray Shale, Moderately Well DrainddPDES, Drainage Area
Interior Plateau, Drainage Area, Wetlands, Forest, Shawnee Hil
Grassland/Pasture/Scrubland, Eastern Corn Belt, NPDES
Cultivated Crops, Interior Plateau, Sandstone/Limestone/Shale,
Wetlands, Highland RinAgriculture to Urban, NPDES, Forest to

Annual Median

Annual Trimmed Mean

Annual Geometric
Mean

Q1 Mean

Q1 Median

Q1 Geometric Mean

Q2 Mean Agriculture, Grassland/Pasture/Scrubland, Limestone, Forest to
Urban
Interior Plateau, Longest Flow Path, Cultivated Crops, Moderate
Q2 Median Well Drained, Sandstone/Limestone/Shale, Highland Rim,

Grassland/Paste/Scrubland, Network Density, Forest to Urban,
Water, Agriculture to Urban

Forest, Drainage Area, Interior Plateau, Shawnee Hills, Wetlanc
Longest Flow Path, NPDES, Urban, Highland Rim, CAFOs, Cer
Till Plain, CSOs, Agriculture to Fest, Precipitation, Urban to
Forest, Gray Shale, Poorly Drained

Forest, NPDES, Highland Rim, Urban, Central Till Plain, Forest
Urban, Water, Limestone, Network Density, Sum of Streams,
Grassland/Pasture/Scrubland, Agriculture to EpfEemperature,
Shawnee Hills, CSOs

Q2 Trimmed Mean

Q2 Geometric Mean
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Table 11(cont.)T Variable selection from stepwise LDA

Drainage Area, Temperature, Urban, Agriculture to Forest, Fore
Q3 Mean Urban, Water, Moderately Well Drained, Central Pilain,
Limestone
Temperature, Longest Flow Path, CSOs, NPDES, Agriculture tc
Forest, Sum of Streams, Cultivated Crops, Poorly Drained, Wetl
Temperature, Urban, Bluegrass, Central Till Plain, Agriculture tc
Forest, ForesptUrban, Water, Network Density, Agriculture to
Urban, Grassland/Pasture/Scrubland, Longest Flow Path, Poorl
Drained
Interior Plateau, Longest Flow Path, Shawnee Hills, Cultivated
Crops, Highland Rim, Moderately Well,
Q3 Geometric Mean Grassland/Pastui®¢rubland, Temperature, Forest to Urban,
Bluegrass, Network Density, CAFOs, Eastern Corn Belt, Forest
Agriculture, Agriculture to Urban, Water, Limestone
Shawnee Hills, Interior Plateau, Central Till Plain, Urban, Forest
Urban, Forest, Modately Well Drained, Highland Rim, NPDES
NPDES, Highland Rim, Interior Plateau, Shawnee Hills, Cultivat
Q4 Median Crops, Wetlands, Agriculture to Urban, Impervious Surface,
Drainage Area
Interior Plateau, Drainage Area, Shawnee Hilldti¢ated Crops,
NPDES, Urban to Forest, Forest to Urban, Water
Forest, Drainage Area, Interior Plateau, Shawnee Hills, Highlan:
Rim, NPDES, Moderately Well Drained, Urban

Q3 Median

Q3 Trimmed Mean

Q4 Mean

Q4 Trimmed Mean

Q4 Geometric Mean
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Table 121 Pooled Covariance Matrix Rank; a test for Multicollinearity/Singularity

Pooled : o .
Dataset # of Variables Covariance nggly I\{Iul'tlcolllnelarlty/
Matrix Rank ingularity Problems

Annual Mean 11 11 NO
Annual Median 13 13 NO
Annual Trimmed Mean 5 5 NO
Annual Geometric 9 9 NO

Mean

Q1 Mean 13 13 NO

Q1 Median 17 17 NO

Q1 Trimmed Mean 12 12 NO

Q1 Geometric Mean 8 8 NO

Q2 Mean 11 11 NO

Q2 Median 11 11 NO

Q2 Trimmed Mean 17 17 NO

Q2 Geometric Mean 15 15 NO

Q3 Mean 9 9 NO

Q3 Median 9 9 NO

Q3 Trimmed Mean 12 12 NO

Q3 Geometric Mean 17 17 NO

Q4 Mean 9 9 NO

Q4 Median 9 9 NO

Q4 Trimmed Mean 8 8 NO

Q4 Geometric Mean 8 8 NO
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Table 13i Classification coefficients and constant for the annual geometric mean LDA
classification equations

Constant -350.6 -2458 -289.4 -281.3 -225.1
g:?nh'a”d 139.4 102.7 132.0 102.9 101.2
NPDES 29.0 42 225 275 2.0
Precipitation  236.3 215.4 263.8 269.5 200.2
Urban 170.7 155.8 159.7 170.0 121.7
Agriculture )45 g 1347 1129.0 118.8 101.4
to Urban

Wetlands 150.2 141.7 160.2 163.1 121.2
Urban to 41.0 35.7 473 48.9 25.2
Agriculture

Sandstone,

Limestone, 284.3 224.8 230.6 219.3 223.3
Shale

Eastern 391.6 335.6 344.4 345.0 327.9
Corn Belt
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Table 147 Cross Validation Classification rates for the SVM and LDA

Annual Mean 93.2 79.5
Annual Median 773 864
Qr;r;l#]al Trimmed 79.5 63.6
Qr;r;l;]al Geometric 88.6 773
Q1 Mean 72.7 773
Q1 Median 79.5 63.6
Q1 Trimmed Mean 81.8 705
Q1 Geometric Mean 841 864
Q2 Mean 65.9 864
Q2 Median 90.9 841
Q2 Trimmed Mean 841 90.9
Q2 Geometric Mean 705 90.9
Q3 Mean 79.5 682
Q3 Median 77.3 72.7
Q3 Trimmed Mean 864 81.8
Q3 Geometric Mean 705 88.6
Q4 Mean 75.0 79.5
Q4 Median 864 682
Q4 Trimmed Mean 75.0 614
Q4 Geometric Mean 75.0 705
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Table 157 Hyperparameters and total number of support vectors for each SVM model

Qr;r;l;]al Geometric 42 16 0.125
Annual Mean 33 2 0.5
Annual Median 43 16  0.125
Annual Trimmed Mean 40 16 0.125
Q1 Geometric Mean 43 8 0.125
Q1 Mean 40 128 0.0625
Q1 Median 38 32 0.0625
Q1 Trimmed Mean 37 8 0.25
Q2 Geometric Mean 41 16  0.125
Q2 Mean 42 16 0.0625
Q2 Median 44 8 0.125
Q2 Trimmed Mean 41 2 1
Q3 Geometric Mean 43 2 05
Q3 Mean 42 1 0.5
Q3 Median 44 16 0.125
Q3 Trimmed Mean 35 2 0.5
Q4 Geometric Mean 42 4 1
Q4 Mean 43 2 1
Q4 Median 40 8 0.5
Q4 Trimmed Mean 41 16 0.5
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Table 161 Misclassified stations after resubstitution. The first number in the parentheses

indicates the cluster each station was misclassified from and the second number represents

the clusterinto which they were classified

Annual Mean

WR-279 (6, 2), WR319 (1, 2)

EW-168 (2, 1), WR279 (3, 1)

Annual Median

WR-279 (3, 1)

NONE

Annual Trimmed

Mean

EC7 (4, 2), EW79 (3, 1), FR64 (4, 1),
IN-2 (3, 5), MG35 (4, 5), MU20 (4, 3),

SGR1 (5, 4), SNDB4 (5, 1), VF38 (3, 5),

WR-134 (5, 3), WR293 (1, 5), WR309
(1, 3), WR46 (1,3)

NONE

Annual

Geometric Mean

CIC-17 (2,5), EG21 (2, 5), SNB4 (3, 4)

WR-192 (7, 4), WR210 (7, 4)

Q1 Mean FC-26 (2, 6) CIC-17, EW1, EW-168, EW94
Q1 Median NONE WR-134

Q1 Trimmed FC7 (7,5), FR64 (7, 1), WR319 (7,5),

Mean WR-348 (1, 7)

Q1 Geometric
Mean

BL-.7 (2, 5), EG7 (4, 5), EW168 (1, 2)

EC-1 (6, 7), EG7 (6, 7), FG0.6 (6, 7),
FC-7 (4,7), WR319 (4, 7)

BL-.7 (8, 5), EW168 (5, 8), EW79 (4,

Q2 Mean EW-79 (5, 2), FC26 (3, 1) 7), FR17 (8, 5), FR64 (8, 5), WR319
(5, 3), WR348 (8, 5)
Q2 Median EW-79 (1, 4) NONE
%;'mmed EW-239 (6, 7) NONE
. BWC-4 (2, 3), EW168 (2, 3), FC7 (2,
Q2 Geometric  \oNE 6), MC-18 (2, 3), WR192 (9, 8), WR

Mean

319 (2, 3)

BL-.7 (1, 4), CIG17 (2, 4), EG21 (2, 1),

Q3 Mean WR-162 (6, 2) EC-7 (2, 3)
Q3 Median Eg:?l(?fl’l)“)’ FED6 (3, 1), FE6 (2. 1), gcy (4, 2)
Mean EC-21 (5, 3), WR319 (3, 5) WR-309 (1, 4)

Q3 Geometric
Mean

NONE

CIC-17 (3, 7), EG21 (3, 7), EELL (4,
6), EW-1 (4, 6), EW94 (4, 6) WR-248
(2, 3), WR309 (3, 7)

EC-21 (5, 1), EW79 (3, 2), FC26 (1, 5),

Q4 Mean WR-279 (1, 5), WR293 (1, 5), WR309  WR-134 (1, 5), WR309 (1, 3)
(5,1
BL-.7 (2, 7), CIG17 (7, 2), ECL (4, 7),
Q4 Median EC-21 (7, 2), EW239 (2, 5), WR248 (4, EC-7 (4, 5)
2)
BL-64 (2, 5), EW168 (3, 1), F&0.6 (5,
Q4 Trimmed 2), FG26 (1, 2), FR64 (3, 1), SNB4 (3, \ yne
Mean 1), WR279 (1, 2), WR309 (2, 3), WR
319 (3, 1)
Q4 Geometric  BL-64 (3, 1), CIG17 (1, 5), E21(3,5), \yp g1 3, 2

Mean

SGR1 (5, 1), WR319 (1, 3)
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Table 171 Cluster prediction and posterior probability error rate estimates for the Annual

LDA model sé classification of the ECWMP
ANNUAL ﬁ‘;‘;;”?g)'c Mean (5) Median (5) Hgg;“%
Station name | Cluster | Est. | Cluster | Est. Cluster | Est. | Cluster | Est.
ECWMP-01 2 0.386 5 0.985 3 1 4 0.618
ECWMP-02 5 1 3 0.999 5 0.62 2 0.887
ECWMP-03 5 0.957 2 0.793 1 1 4 0.562
ECWMP-04 5 0.995 3 1 2 1 2 0.991
ECWMP-05 5 1 1 0.999 1 1 4 0.65
ECWMP-06 5 0.969 5 0.999 3 0.67 4 0.327
ECWMP-07 5 0973 5 1 3 1 1 0.431
ECWMP-08 2 0.695 1 0.975 1 1 1 0.379
ECWMP-09 5 0.998 5 1 3 1 1 0.493
ECWMP-10 5 0.998 5 1 3 1 1 0.386
ECWMP-11 5 0.995 5 1 3 1 1 0.438
Table18i Cl uster prediction and probability
classificaion of the ECWMP sites
ANNUAL Geometric Mean (3) Median (7) Trimmed
Mean(8) Mean (6)
Station name | Cluster | Est. | Cluster | Est. | Cluster | Est. | Cluster | Est.
ECWMP-01 5 0.431 1 0.882 2 0.436 4 0.451
ECWMP-02 5 0.383 1 0.918 4 0.392 6 0.402
ECWMP-03 4 0.496 1 0.934 4 0.535 6 0.556
ECWMP-04 4 0.473 1 0.929 4 0.506 6 0.529
ECWMP-05 5 0.438 1 0.907 2 0.445 4 0.456
ECWMP-06 5 0.565 1 0.928 2 0.572 4 0.589
ECWMP-07 5 0.659 1 0.871 2 0.666 4 0.692
ECWMP-08 4 0.437 1 0.921 4 0.464 6 0.48
ECWMP-09 5 0.673 1 0.85 2 0.679 4 0.706
ECWMP-10 5 0.687 1 0.836 2 0.693 4 0.718
ECWMP-11 5 0.656 1 0.844 2 0.662 4 0.688
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Table 191 The percentage of water quality variables from the ECWMP dataset that fell within the range of the cluster to which it was
assigned for the annal datasets. Highlighted values classified the highest percentage of variables within the specified range among
different models for a given station
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Annual SVM Model Cluster Range Accuracy Annual LDA Model Cluster Range Accuracy
swion | Geomee | wean sv | Meran | e | Meaniba | MeantDa |t | el
ECWMP-01 78.6 714 85.7 85.7 64.3 57.1 85.7 78.6
ECWMP-02 714 92.9 78.6 78.6 714 85.7 714 35.7
ECWMP-03 78.6 714 78.6 64.3 64.3 78.6 78.6 85.7
ECWMP-04 78.6 85.7 85.7 78.6 78.6 714 57.1 28.6
ECWMP-05 64.3 714 78.6 57.1 714 14.3 85.7 714
ECWMP-06 78.6 714 78.6 78.6 78.6 57.1 78.6 71.4
ECWMP-07 78.6 714 71.4 85.7 78.6 35.7 78.6 71.4
ECWMP-08 85.7 714 71.4 78.6 85.7 50.0 714 78.6
ECWM P-09 85.7 57.1 71.4 85.7 85.7 35.7 85.7 714
ECWMP-10 78.6 57.1 85.7 714 78.6 50.0 85.7 64.3
ECWMP-11 64.3 57.1 64.3 64.3 57.1 50.0 71.4 57.1




Table 20¢ Wilcoxon MatchedPairs Signedranks test decision matrixthe SVM outperformed
the LDA in 6/20 mdels; the LDA outperformed the SVM in 2/20 models; neither the LDA or
SVM outperfomed one another in 12/20 models

Annual EITHER SVM EITHER EITHER
Quarter 1  EITHER SVM EITHER SVM
Quarter2  EITHER [BR [0 N SVM
Quarter 3 EITHER SVM EITHER SVM
Quarter 4  EITHER EITHER EITHER EITHER
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FIGURES

White River Watershed
8 digit HUCs

Figure 17 White River watershed 81 digit HUCs; Upper White (05120201), Lower White
(05120202), Eel (05120203), Driftwood (05120204), Flatrockdaw (05120205), Upper East
Fork (05120206), Muscatatuck (05120207), and Lower East Fork (05120208)
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IDEM Fixed Station
Monitoring Database

Figure 21 Selected sites from the IDEM Fixed Station Monitoring network throughout the
White River Watershed
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Figure 37 Simplified Kohonen Selfi Organizing Map; this example exibits a 4 x 4
architecture and a rectangular topology; he smaller red circles represent the input nodes
and the larger blue circles represent the output nodes
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Figure 47 A simplified representation ofthe architecture ofa Support Vector Machine and
an Artificial Neural Network
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DaviesBouldinIndex for theAnnual
GeometricMean Factors

2.2

e\
AN\
A\

0.8

0.6 T T T T T T T T T 1

Figure 91 Davies Bouldin index falls sharply until 5 clugers, then the slope levels out;
therefore, 5 clusters was chosen to represent the annggometric mean factor clusters

77



U-matrix
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Figure 107 The U-matrix and cluster arrangements of 6 and 8 clusterfor the annual
geometric mean;8 clusters were chosen because they weretter in line with the U-matrix
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Figure 11¢ Side by side comparison of the annual geometric mean SOM cluster configuration and the corresponding component maps; by
visually ovetaying the clustering arrangement figure on each of the component maps, one can identify variables with high Jaluesch of
the given clusters



Cluster 1 in the Annual Geometric Mean
Clusters Factor Cluster Means and Standard
Deviation

A

Subsurﬂace Flow SedimentAssociated OrganieAssociated RedoxAssociated
Associated

Figure 127 The Box-Plot of cluster 1 from the annual geometric mean factor clusters; this
cluster has moctrate to variable concentrations of the subsurface flow related variables,
high concentrations of the sediment relate variables, slightly high concentrations of the
organic related variables, and high but variable values for the redox associated variables
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Figure 1371 Side by side comparison of the annual geometric mean SOM clusters and the annual trimmed mean SOM clusters; clusters 2
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Figure 147 Side by sde comparison of the quarter 1 geometric mean SOM clusters and the quarter 3 geometric mean SOM clusters;
CIC-17 and EW239 are in the same cluster in quarter 1 and different clusters in quarter 3. In quarter 1 they are in cluster 1, which is
characterized by low total phosphorus concentrations; bwever, in quarter 3 CIC-17 is in cluster 3, which is characterized by high total
phosphorus concentrations, and EVW239 is in cluster 7, which is characterized by moderate total phosphorus cardrations
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Figure 157 Side by side comparison of the annual geometric mean factor clusters and the annual geometric mean SOM clustéss;
clustering of the SOM and factors produce similar clusters, but there are some differences (e.g. SKD



National Hydrography
Dataset

Figure 167 Individu al monitoring station watersheds and tle National Hydrography
Dataset;it is visually apparent that network density increases in theouthern half of the
watershed
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White River Watershed
Slope Percentage

N1 ’ 7
........

High : 100
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Figure 177 The slope percentages of the White River watershed. Flat areas are darkand
steeper slopes are lighter
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White River Watershed
Temperature Gradient

B9 High: 55

B Low:51

Figure 187 White River Watershed mean annual temperature gradient alues are in
degrees Celsius
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White River Watershed
Annual Precipitation

W High: 47
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Figure 197 White River Watershed mean annual precipitation yalues are in inche¥
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White River Watershed
Ecoregions

" Eastern Corn Belt
. Interior Plateau
~ Interior Valleys and Hills

Figure 207 White River Watershed Levellll Ecoregions
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White River Watershed
Natural Region

Central Till Plain

M Bive grass
I Highland Rim

. Shawnee Hills
Southwestern Lowlands

B Southern Bottomlands -

Figure 217 White River Watershed Natural Regions
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White River Watershed
Bedrock Geology

[] Gray Shale
[JLime/Dolo
[]Limestone
[ %and/Shale
[ Siltstone
[ 55/L5/5hl

Figure 227 Bedrock Geology of the White River Watershed;
Lime/Dolo=Limestone/Dolomite, Sand/Shale=Sandstone/Shale,
SS/LS/Shi=Sandstone/Limestone/Shale
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White River Watershed
Point Sources

4 Combined Sewer Overflow

® Confined Feeding Dperation
« NPDES Facility

Figure 237 White River Point Source Pollution; Combined Sewer Overflows, confined
feeding operations, NPDES facilities
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White River Watershed
2001 Land Cover

I Open Water

I Urban

M Forest
Grassland/Pasture/Scubland
Cultivated Crops
Wetlands

I Land Use Change

Figure 247 White River Watershed 2001 land cover dataset
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White River Watershed
Soil Drainage Characteristics

I Well to Excessively Drained
[ Moderately Well Drained

[ Somewhat Poorly Drained
I Very Poorly Drained

Figure 257 White River Watershed Soil Drainage Characteristics
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Eagle Creek Watershed
Test Sites

Figure 267 The Eagle Creek Watershd Monitoring Program (ECWMP) site s for testing
model performance
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Eagle Creek Watershed
Test Sites 2001 Land Cover

B 0pen Water

I Urban

I Forest
Grassland/Pasture/Scubland
Cultivated Crops
Wetlands

I Land Use Change

Figure 277 2001 Land Use in the ECWMP watersheds

95



Eagle Creek Watershed
Test Sites Bedrock Geology

[ Gray Shale
[ Ilimestone/Dolomite
[ 1Siltstone

Figure 2871 Bedrock geology in the ECWMP watersheds
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Eagle Creek Watershed
Test Sites Soil Drainage
Characteristics

[ IWell Drained

[_IVery Poorly Drained

[ Somewhat Poorly Drained
[ Poorly Drained

Figure 297 Soil drainage characteristics of the ECWMP watersheds
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Eagle Creek Watershed
Test Sites Point Sources

B Confined Feeding
Operation

2 NPDES Facility

Figure 307 Point sources in the ECWMP watersheds
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Figure 317 The LDA annual geometric mean classification model classified the ECWA stations into clusters 2 and 5; the IDEM stations
clusters 2 and 5 are located mostly in the upper halffahe White River; of note is that ECWA stations, ECWMP03 and ECWMP-04
were classified into a different cluster than the IDEM station EC21. These three stations have very simil in watershed characteristics
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Figure 327 The SVM annual geometric mean classification modelassified the ECWA stations into clusters 4 and 5; the IDEM stations
in clusters 4 and 5 are generally located in thepper half of the White River; of note is that ECWA stations, ECWMP-03 and ECWMP-
04, were classified into the sameluster as IDEM station, EC-21; these three stations have very simitan watershed characteristics
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Box-Cox Transformations

APPENDIX AT SUPPLEMENTARY TABLES

Supplementary Table 117 Annual Box-Cox Transformation Powers and ShapireWilk normality test results; the ShapiroWil k
normality test was run before and after the BoxCox transformation was applied

ANNUAL MEAN

ANNUAL MEDIAN

ANNUAL TRIMMED MEAN

ANNUAL GEOMEAN

SW Box- SW SW Box- SW SW Box- SW SW Box- SW

Pretest Cox Postest Pretest Cox Postest Pretest Cox Postest Pretest Cox Postest
Alkalinity 0.02 1.90 0.13 0.03 1.65 0.16 0.02 1.85 0.14 0.02 1.90 0.14
TOC 0.21 NA 0.21 0.29 NA 0.29 0.24 NA 0.24 0.17 NA 0.17
Chloride 0.01 0.20 0.71 0.04 0.35 0.76 0.02 0.20 0.72 0.04 0.25 0.72
COoD 0.05 NA 0.05 0.05 NA 0.05 0.06 NA 0.06 0.05 0.20 0.11
DO 0.00 5.30 0.25 0.00 4.35 0.13 0.00 5.45 0.16 0.00 4.70 0.09
Hardness 0.02 2.45 0.34 0.02 2.30 0.37 0.02 2.40 0.35 0.02 2.45 0.29
TKN 0.01 -0.40 0.39 0.00 -0.65 0.05 0.01 -0.45 0.38 0.02 -0.40 0.45
NO2 + NO3 0.00 0.20 0.63 0.00 0.30 0.34 0.00 0.25 0.64 0.01 0.20 0.91
pH 0.00 32.30 0.57 0.00 65.40 0.00 0.00 43.65 0.52 0.00 32.10 0.50
Phosphorus 0.00 -0.45 0.65 0.00 -0.25 0.40 0.00 -0.40 0.56 0.00 -0.20 0.46
TSS 0.00 -1.00 0.24 0.00 -0.65 0.30 0.00 -0.90 0.00 0.00 -0.60 0.03
SC 0.75 NA 0.75 0.42 NA 0.42 0.69 NA 0.69 0.55 NA 0.55
S04 0.00 -0.50 0.74 0.00 -0.55 0.68 0.00 -0.50 0.72 0.00 -0.45 0.73
Temperaturel 0.69 NA 0.69 0.83 NA 0.83 0.69 NA 0.69 0.62 NA 0.62
Turbidity 0.00 -0.90 0.16 0.00 -1.10 0.01 0.00 -1.20 0.01 0.00 -1.20 0.02
Iron 0.00 -0.95 0.51 0.00 -0.75 0.23 0.00 -0.95 0.01 0.00 -0.85 0.18
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Supplementary Table 127 Quarter 1 Box-Cox Transformation Powers and ShapireWilk normality test results; the ShapiroWilk
normality test was run before and after the BoxCox transformation was applied

QUARTER 1 MEAN

QUARTER 1 MEDIAN

QUARTER 1 TRIMMED

QUARTER 1 GEOMEAN

MEAN

SW Box- SW SW Box- SW SW Box- SW SW Box- SW

Pretest Cox Postest Pretest Cox Postest Pretest Cox Postest Pretest Cox Postest
Alkalinity 0.01 1.70 0.04 0.01 1.90 0.07 0.01 1.75 0.03 0.01 1.65 0.05
TOC 0.31 NA 0.31 0.41 NA 0.41 0.32 NA 0.32 0.38 NA 0.38
Chloride 0.01 0.30 0.61 0.10 NA 0.10 0.01 0.30 0.63 0.03 0.35 0.62
COD 0.28 NA 0.28 0.19 NA 0.19 0.38 NA 0.38 0.42 NA 0.42
DO 0.01 2.55 0.07 0.00 8.70 0.69 0.01 3.70 0.14 0.01 1.60 0.02
Hardness 0.00 2.35 0.07 0.00 2.50 0.08 0.00 2.35 0.05 0.00 2.30 0.09
TKN 0.49 NA 0.49 0.37 NA 0.37 0.82 NA 0.82 0.46 NA 0.46
NO2 + NO3 0.02 0.15 0.04 0.05 0.35 0.05 0.01 0.15 0.02 0.03 0.25 0.04
pH 0.01 26.65 1.00 0.04 7.85 0.17 0.01 25.50 0.97 0.01 26.40 1.00
Phosphorus 0.00 -0.20 0.52 0.00 0.10 0.37 0.00 -0.25 0.10 0.00 0.00 0.15
TSS 0.00 -0.55 0.11 0.00 -0.70 0.07 0.00 -0.85 0.06 0.00 -0.60 0.11
SC 0.11 NA 0.11 0.09 NA 0.09 0.07 NA 0.07 0.09 NA 0.09
S04 0.00 -1.00 0.66 0.00 -1.00 0.63 0.00 -0.85 0.81 0.00 -0.85 0.83
Temperaturd  0.60 NA 0.60 0.33 NA 0.33 0.77 NA 0.77 0.62 NA 0.62
Turbidity 0.00 -0.90 0.01 0.00 -0.50 0.55 0.00 -1.15 0.00 0.00 -0.85 0.17
Iron 0.00 -0.75 0.11 0.00 0.40 0.01 0.00 0.55 0.04 0.00 0.45 0.00
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Supplementary Table 137 Quarter 2 Box-Cox Transformation Powers and ShapireWilk normality test results; the ShapiroWilk
normality test was run before and after the BoxCox transformation was applied

QUARTER 2 MEAN

QUARTER 2 MEDIAN

QUARTER 2 TRIMMED

QUARTER 2 GEOMEAN

MEAN

SW Box- SW SW Box- SW SW Box- SW SW Box- SW

Pretest Cox Postest Pretest Cox Postest Pretest Cox Postest Pretest Cox Postest
Alkalinity 0.01 1.80 0.07 0.01 1.50 0.07 0.01 1.70 0.06 0.01 1.90 0.06
TOC 0.10 NA 0.10 0.59 NA 0.59 0.14 NA 0.14 0.39 NA 0.39
Chloride 0.03 0.30 0.75 0.04 0.35 0.80 0.03 0.30 0.73 0.06 NA 0.06
COD 0.27 NA 0.27 0.19 NA 0.19 0.23 NA 0.23 0.26 NA 0.26
DO 0.00 3.45 0.04 0.00 0.90 0.00 0.00 1.65 0.00 0.00 2.30 0.00
Hardness 0.00 2.45 0.11 0.00 2.20 0.09 0.00 2.40 0.09 0.00 2.45 0.09
TKN 0.33 NA 0.33 0.11 NA 0.11 0.15 NA 0.15 0.17 NA 0.17
NO2 + NO3 0.01 0.20 0.06 0.00 0.20 0.04 0.01 0.25 0.08 0.01 0.35 0.20
pH 0.00 4.00 0.02 0.00 40.85 0.00 0.00 15.60 0.48 0.01 4.15 0.02
Phosphorus 0.01 -0.20 0.66 0.00 -0.05 0.64 0.00 -0.20 0.46 0.00 -0.10 0.44
TSS 0.00 -0.10 0.63 0.00 -0.45 0.14 0.00 -0.25 0.35 0.00 -0.50 0.01
SC 0.30 NA 0.30 0.13 NA 0.13 0.19 NA 0.19 0.09 NA 0.09
S04 0.00 -0.40 0.98 0.00 -0.40 0.96 0.00 -0.40 0.96 0.00 -0.40 0.97
Temperaturel  0.49 NA 0.49 047 NA 0.47 0.54 NA 0.54 0.48 NA 0.48
Turbidity 0.01 0.15 0.44 0.00 -0.70 0.28 0.00 -0.10 0.33 0.00 -0.70 0.26
Iron 0.00 0.05 0.55 0.00 -0.35 0.71 0.00 0.00 0.54 0.00 -0.40 0.83
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Supplementary Table 147 Quarter 3 Box-Cox Transformation Powers and $apiro-Wilk normality test results; the ShapiroWilk
normality test was run before and after the BoxCox transformation was applied

QUARTER 3 MEAN

QUARTER 3 MEDIAN

QUARTER 3 TRIMMED

QUARTER 3 GEOMEAN

MEAN

SW Box- SW SW Box- SW SW Box- SW SW Box- SW

Pretest Cox Postest Pretest Cox Postest Pretest Cox Postest Pretest Cox Postest
Alkalinity 0.09 NA 0.09 0.08 NA 0.08 0.09 NA 0.09 0.11 NA 0.11
TOC 0.11 NA 0.11 0.22 NA 0.22 0.16 NA 0.16 0.12 NA 0.12
Chloride 0.00 0.05 0.38 0.00 0.15 0.29 0.00 0.05 0.38 0.00 0.10 0.45
COD 0.05 NA 0.05 0.01 0.20 0.14 0.03 -0.25 0.51 0.03 -0.15 0.40
DO 0.01 1.95 0.07 0.00 2.60 0.14 0.00 2.10 0.06 0.00 2.20 0.05
Hardness 0.12 NA 0.12 0.06 NA 0.06 0.12 NA 0.12 0.15 2.55 0.32
TKN 0.00 -0.60 0.28 0.00 -0.45 0.03 0.00 -0.55 0.31 0.00 -0.50 0.30
NO2 + NO3 0.00 0.30 0.12 0.00 0.50 0.06 0.00 0.30 0.12 0.00 0.30 0.16
pH 0.00 5.80 0.01 0.00 5.10 0.00 0.00 9.60 0.03 0.00 6.20 0.01
Phosphorus 0.00 -0.40 0.50 0.00 -0.30 0.34 0.00 -0.40 0.51 0.00 -0.35 0.56
TSS 0.00 -0.35 0.04 0.00 -0.65 0.07 0.00 -0.50 0.00 0.00 -0.65 0.00
SC 0.55 NA 0.55 0.52 NA 0.52 0.60 NA 0.60 0.79 NA 0.79
S04 0.00 -0.25 0.52 0.00 -0.25 0.65 0.00 -0.25 0.55 0.00 -0.20 0.59
Temperaturd  0.85 NA 0.85 1.00 NA 1.00 0.80 NA 0.80 0.85 NA 0.85
Turbidity 0.00 -0.30 0.13 0.00 -1.00 0.00 0.00 -0.65 0.01 0.00 -0.70 0.01
Iron 0.00 -0.30 0.04 0.00 -0.75 0.01 0.00 -0.50 0.01 0.00 -0.55 0.02
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Supplementary Table 157 Quarter 4 Box-Cox Transformation Powers and ShapireWilk normality test results; the ShapiroWilk
normality test was run before and after the BoxCox transformation was applied

QUARTER 4 MEAN

QUARTER 4 MEDIAN

QUARTER 4 TRIMMED

QUARTER 4 GEOMEAN

MEAN

SW Box- SW SW Box- SW SW Box- SW SW Box- SW

Pretest Cox Postest Pretest Cox Postest Pretest Cox Postest Pretest Cox Postest
Alkalinity 0.03 1.60 0.07 0.02 1.85 0.10 0.03 1.60 0.09 0.02 1.60 0.07
TOC 0.37 NA 0.37 0.44 NA 0.44 0.29 NA 0.29 0.32 NA 0.32
Chloride 0.01 0.25 0.76 0.01 0.35 0.41 0.02 0.25 0.80 0.05 0.30 0.90
COD 0.14 NA 0.14 0.03 0.30 0.05 0.15 NA 0.15 0.05 NA 0.05
DO 0.00 8.10 0.36 0.00 6.50 0.12 0.00 8.35 0.43 0.00 8.30 0.33
Hardness 0.07 NA 0.07 0.10 NA 0.10 0.07 NA 0.07 0.05 NA 0.05
TKN 0.00 -0.55 0.36 0.00 -0.60 0.08 0.00 -0.45 0.29 0.00 -0.55 0.36
NO2 + NO3 0.00 0.25 0.50 0.00 0.45 0.59 0.00 0.25 0.51 0.01 0.15 0.49
pH 0.03 32.35 0.08 0.00 28.75 0.13 0.01 37.10 0.02 0.03 32.15 0.09
Phosphorus 0.00 -0.35 0.34 0.00 -0.15 0.09 0.00 -0.35 0.28 0.00 -0.10 0.15
TSS 0.00 -0.55 0.63 0.00 0.05 0.08 0.00 -0.55 0.61 0.00 0.00 0.58
SC 0.65 NA 0.65 0.59 NA 0.59 0.69 NA 0.69 0.68 NA 0.68
S04 0.00 -0.50 0.47 0.00 -0.55 0.49 0.00 -0.55 0.38 0.00 -0.50 0.37
Temperaturef 0.36 NA 0.36 0.20 NA 0.20 0.31 NA 0.31 0.35 NA 0.35
Turbidity 0.00 -0.50 0.11 0.00 -0.65 0.41 0.00 -0.65 0.28 0.00 -0.75 0.33
Iron 0.00 -0.60 0.82 0.00 -0.20 0.50 0.00 -0.50 0.50 0.00 -0.55 0.23




PCA Loadings

Supplementary Table 2117 Annual Mean DatasetFactor Loadings;,A DNL O i ndi cat es
variable did meet the 0.6 loading criterion on any factor

Alkalinity 90 -22 -20 16
TOC -16 89 -2 -2
Chloride 75 54 -17 16
COD -12 92 32 7
DO 10 24 30 85
Hardness 94 -13 -21 12
TKN 24 89 26 13
NO2 + NO3 83 -19 -5 9
pH 17 -8 30 87
Total P 54 63 42 3
TSS -9 22 93 -4
SC 92 32 -14 9
Sulfate 73 47 10 -17
Temperature DNL DNL DNL DNL
Turbidity -19 9 93 13
Iron -14 16 96 -9 Final Communality
Eigenvalue 4.802 3.702 3.307 1.645 13.456795
% Variance Explained 32.0133 24.68  22.0467 10.9667 89.7119667
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Supplementary Table 227 Annual Median DatasetFactor Loadings;i DNL 0 i
a variable did meet the 0.6 loading criterion on any factor

Alkalinity 87 -31 -26 16
TOC -6 2 93 -7
Chloride 81 -3 46 22
COD -6 43 87 9
DO 9 -16 39 78
Hardness 92 -29 -15 12
TKN 25 39 83 12
NO2 + NO3 77 -15 -24 3
pH 22 5 -19 86
Total P DNL DNL DNL DNL
TSS -8 95 16 3
SC 95 -14 21 14
Sulfate 82 16 35 -1
Temperature -9 79 19 1
Turbidity -18 94 12 -3
Iron -19 92 10 -16 Final Communaty
Eigenvalue 4.624 3.879 3.127 1.515 13.146
WE)‘(’;;;’;? 30.82667 25.86  20.84667  10.1 87.64

Supplementary Table 237 Annual Trimmed Mean DatasetF act o r
indicatesthat a variable did meet the 0.6 loading criterion on any facto

Loadi

Alkalinity 88 -26 -28 15
TOC -9 1 91 -5
Chloride 80 -9 48 18
COD -5 39 90 7
DO 10 -32 27 83
Hardness 93 -25 -19 11
TKN 29 33 85 12
NO2 + NO3 81 -8 -25 7
pH 16 21 -11 89
Total P DNL DNL DNL DNL
TSS -4 97 16 -3
SC 94 -12 25 11
Sulfate 78 14 39 -11
Temperature -21 66 47 12
Turbidity -15 95 12 2
Iron -16 95 10 -11 Final Communality
Eigenvalue 4.657 3.758 3.344 1.63 13.389
% Variance Explained 31.0467 23.4875 20.9 10.1875 83.68125
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Supplementary Table 247 Annual Geometric Mean Datasefactor Loadings;i D NL 0
indicates that a variable did meet the 0.6 loading criterion on any factor

Alkalinity 86 -32 -25 14
TOC -6 3 95 -5
Chloride 82 -4 45 20
COD -3 39 90 7
DO 16 -23 26 82
Hardness 91 -30 -17 11
TKN 30 37 84 12
NO2 + NO3 83 -10 -19 7
pH 12 10 -12 89
Total P DNL DNL DNL DNL
TSS -4 97 15 -2
SC 95 -11 22 14
Sulfate 81 19 35 -9
Temperature -18 75 40 16
Turbidity -16 94 11 -4
Iron -14 94 10 -21 Final Communality
Eigenvalue 4.712 3.878 3.208 1.663 13.46
% Variance
Explained 31.4133 25.8533 21.3867 11.0867 89.73333333

Supplementary Table 257 Quarter 1 Mean DatasetFactor Loadings;fi D NL 0
a variable did meet the 06 loading criterion on any factor

Alkalinity 92 -11 -25 16
TOC -14 95 7 -7
Chloride 78 52 -12 -4
COD -3 91 35 -11
DO -8 -9 -21 84
Hardness 94 -9 -23 17
TKN 39 82 29 -13
NO2 + NO3 74 -33 5 22
pH 31 -9 -11 78
Total P 42 66 52 -6
TSS -8 18 91 -21
SC 91 29 -8 2
Sulfate 80 39 7 -22
Temperature DNL DNL DNL DNL
Turbidity -19 19 94 -5
Iron -16 17 93 -17 Final Communality
Eigenvalue 4.861 3.596 3.257 1.577 13.291
% Variance
Explained 32.4067 239733 21.71333 10.51333 88.60666667
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Supplementary Table 267 Quarter 1 Median DatasetFactor Loadings;ii D NL 0
that a variable did meet the 0.6 loading criterion on any factor

Alkalinity 89 -18 -27 19 -9
TOC -5 97 7 -8 3
Chloride 79 50 -13 -1 0
COD -3 91 33 -7 11
DO -13 -23 -37 69 -33
Hardness 91 -18 -27 16 -11
TKN 42 77 32 -9 11
NO2 + NO3 67 -45 -8 17 3
pH 38 -2 -22 82 4
Total P DNL DNL DNL DNL DNL
TSS 0 13 90 -24 15
SC 95 16 -8 10 -1
Sulfate 85 35 7 -14 -2
Temperature -11 10 20 -10 95
Turbidity -23 34 83 -18 16
Iron -34 12 87 -11 3 Final Communality
Eigenvalue 4.692 3.199 2.94 1.366 1.244 13.442
% Variance
Explained 31.28 21.3267 19.6  9.10667 8.29333 89.61333333

ndi

Supplementary Table 277 Quarter 1 Trimmed Mean DatasetFactor Loadings;A DN L 0
indicates that a variable did meet the 0.6 loading criterion on any factor

Alkalinity 91 -13 -27 18
TOC -12 96 3 -8
Chloride 79 50 -16 -2
COD -5 91 34 -16
DO -9 -10 -15 86
Hardness 93 -10 -25 19
TKN 39 82 29 -18
NO2 + NO3 74 -35 8 23
pH 34 -10 -8 69
Total P 43 65 52 -11
TSS -11 12 90 -31
SC 92 25 -12 0
Sulfate 80 37 0 -24
Temperature -3 12 32 -65
Turbidity -17 30 88 -13
Iron -27 10 85 -16 Final Communality
Eigenvalue 4.947 3.589 3.1 2.017 13.654
% Variance
Explained 30.91875 22.4313 19.375 12.6063 85.3375
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Supplementary Table 287 Quarter 1 Geometric Mean Datasefactor Loadings;i DN L 0
indicates that a variable dd meet the 0.6 loading criterion on any factor

Alkalinity 91 -11 -31 11
TOC -10 96 6 -9
Chloride 79 51 -11 -1
COD -3 92 32 -11
DO -11 -10 -25 84
Hardness 92 -10 -30 14
TKN 37 84 29 -12
NO2 + NO3 73 -35 2 25
pH 30 -10 -22 71
Total P 42 63 57 -4
TSS -8 18 90 -29
SC 91 27 -9 3
Sulfate 79 40 5 -23
Temperature DNL DNL DNL DNL
Turbidity -22 29 87 -18
Iron -32 8 85 -17 Final Communality
Eigenvalue 4.898 3.653 3.116 1.541 13.208
% Variance
Explained 32.65333 24.3533 20.77333 10.2733 88.05333333
Supplementary Table 297 Quarter 2 Mean DatasetFactor Loadings;A DNL O i ndi cat es

a variable did meet the 0.6 loading criterion on any factor

Alkalinity 88 -29 -15 19
TOC -7 83 -2 5
Chloride 85 39 -19 17
COD 3 91 32 -1
DO 32 26 -25 73
Hardness 92 -25 -16 15
TKN 39 81 38 3
NO2 + NO3 70 -44 16 22
pH 9 -5 31 84
Total P DNL DNL DNL DNL
TSS -6 26 94 0
SC 97 12 -13 13
Sulfate 82 35 -2 -2
Temperature -18 76 31 12
Turbidity -23 14 91 18
Iron -9 20 96 -4 Final Communality
Eigenvalue 4.802 3.584 3.261 1.513 13.161
% Variance
Explained 32.01333 23.89333 21.74 10.08667 87.74
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Supplementary Table 2107 Quarter 2 Median DatasetFactor Loadings, i DN L 0

that a variable did meet the 0.6 loading criterion on any factor

Alkalinity 89 -26 -22 19
TOC -6 1 92 -4
Chloride 81 -16 46 20
COD -6 39 90 6
DO 27 -46 26 63
Hardness 93 -22 -17 16
TKN 27 39 85 4
NO2 + NO3 69 9 -39 29
pH 19 5 -8 88
Total P DNL DNL DNL DNL
TSS -9 93 24 -1
SC 95 -17 17 16
Sulfate 81 3 41 -13
Temperature DNL DNL DNL DNL
Turbidity -22 94 12 2
Iron -12 94 18 -15 Final Communality|
Eigenvalue 4.589 3.344 3.186 1.447 12.567
% Variance Explained 32.77857 23.88571 22.75714 10.33571 89.76428571

ndi

Supplementary Table 2117 Quarter 2 Trimmed Mean DatasetFactor Loadings;i DN L o
indicates that a variable did meet the 0.6 loading criterion on any factor

Alkalinity 89 -29 -18 17

TOC -5 87 1 -4

Chloride 85 39 -18 18

COD 1 91 35 2

DO 33 21 -33 70

Hardness 92 -25 -18 13

TKN 35 83 37 3

NO2 + NO3 70 -44 17 20

pH 8 -4 21 89

Total P DNL DNL DNL DNL

TSS -7 24 95 -1

SC 97 11 -13 12

Sulfate 81 36 -5 -19

Temperature -21 75 31 21

Turbidity -22 20 93 10

Iron -11 20 96 -5 Final Communality
Eigenvalue 4.793 3.645 3.356 1.507 13.273
% Variance Explained 31.95333 24.3 22.37333 10.04667 88.48666667
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Supplementary Table 2.127 Quarter 2 Geometric Mean DatasefFactor Loadings;i DN L 0
indicates that a variable did meet the 0.6 loading criterion on any factor

Alkalinity 88 -25 -24 16
TOC -6 89 -3 -7
Chloride 80 46 -24 8
COD 1 91 34 1
DO 34 26 -40 63
Hardness 92 -22 -23 13
TKN 33 85 36 6
NO2 + NO3 71 -43 11 24
pH 7 -3 6 92
Total P DNL DNL DNL DNL
TSS -8 26 93 -3
SC 91 12 -16 12
Sulfate 82 36 4 -20
Temperature -20 75 37 22
Turbidity -23 16 93 5
Iron -12 19 95 -13 Final Communality
Eigenvalue 4.716 3.74 3.376 1.476 13.309
% Variance
Explained 31.44 2493333 22.50667 9.84 88.72666667
Supplementary Table 2137 Quarter 3 Mean DatasetFactor Loadings;i DNL 0 i ndi cat es

that a variable did meet the 0.6 loading cterion on any factor

Alkalinity 82 -25 -39 14
TOC -1 -6 93 -5
Chloride 81 -5 43 26
COD -1 41 86 24
DO 13 2 23 90
Hardness 91 -20 -25 12
TKN 22 35 82 29
NO2 + NO3 84 -19 -11 -5
pH 12 17 1 91
Total P 71 34 48 12
TSS -5 95 23 9
SC 94 -9 26 13
Sulfate 79 24 36 0
Temperature DNL DNL DNL DNL
Turbidity -10 92 6 14
Iron -13 96 12 -1 Final Communality
Eigenvalue 4.982 3.317 3.244 1.93 13.473
% Variance
Explained 33.21333 22.1133 21.62667 12.8667 89.82
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Supplementary Table 21471 Quarter 3 Median DatasetFactor Loadings;i DNL O i ndi cat es
that a variable did meet the 0.6 loading criterion on any factor

Alkalinity 75 -30 -48 18
TOC 8 -4 94 -8
Chloride 85 -3 35 22
COD 3 39 88 20
DO 14 -9 24 90
Hardness 88 -23 -30 17
TKN 28 41 80 24
NO2 + NO3 81 -16 -17 -7
pH 12 15 -5 89
Total P 76 29 38 7
TSS 3 97 17 11
SC 96 -13 15 11
Sulfate 84 16 26 -1
Temperature -25 61 53 28
Turbidity -10 95 11 -2
Iron -8 97 13 -6 Final Communality
Eigenvalue 5.142 3.79 3.401 1.921 14.25
vovarance 55437 93687 212562  12.006 89.0625
Explained

Supplementary Table 21571 Quarter 3 Trimmed Mean DatasetFactor Loadings;i D N L 0
indicates that a variable did meethe 0.6 loading criterion on any factor

Alkalinity 81 -25 -41 13
TOC 1 -9 95 -4
Chloride 82 -3 40 27
COD -3 36 89 21
DO 13 -2 22 91
Hardness 91 -19 -27 12
TKN 23 34 83 30
NO2 + NO3 84 -20 -12 -4
pH 13 17 3 90
Total P 72 31 48 11
TSS -2 96 21 11
SC 95 -8 23 13
Sulfate 80 23 35 1
Temperature DNL DNL DNL DNL
Turbidity -9 95 8 10
Iron -13 97 9 -2 Final Communality
Eigenvalue 5.035 3.348 3.308 1.927 13.618
WE)‘(’SQ%Z? 33.56667 22.32 22.05333 12.84667  90.78666667
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Supplementary Table 2161 Quarter 3 Geometric Mean Datasefactor Loadings;i DN L 0
indicates that a variable did meet the 0.6 loading criterion on any factor

Alkalinity 81 -26 -39 13
TOC 1 -8 95 -5
Chloride 83 0 38 27
COD -3 38 90 18
DO 14 1 19 90
Hardness 90 -25 -26 5
TKN 23 37 83 28
NO2 + NO3 84 -14 -12 -1
pH 12 13 1 91
Total P 71 30 48 11
TSS -2 96 20 15
SC 94 -7 21 16
Sulfate 82 21 34 2
Temperature DNL DNL DNL DNL
Turbidity -11 96 10 8
Iron -11 97 11 -5 Final Communality
Eigenvalue 5.044 3.368 3.274 1.911 13.597
% Variance
Explained 33.6267 22.4533 21.8267 12.74 90.64666667

Supplementary Table 2177 Quarter 4 Mean DatasetFactor Loadings;i DNL 0 temndi c a
that a variable did meet the 0.6 loading criterion on any factor

Alkalinity 78 -32 -36 21
TOC -8 12 88 -13
Chloride 80 -21 43 8
COD -3 40 89 1
DO -6 -23 3 92
Hardness 86 27 -27 19
TKN 36 32 82 5
NO2 + NO3 82 -3 -16 7
pH 21 27 -10 85
Total P 67 29 51 -6
TSS -8 90 28 -1
SC 94 -16 22 4
Sulfate 80 7 29 -21
Temperature DNL DNL DNL DNL
Turbidity -15 93 20 7
Iron -16 92 19 -7 Final Communality
Eigenvalue 4.873 3.263 3.223 1.727 13.087
"/Evar?ance 32.4867 21.7533 21.4867 11.5133 87.24666667
xplained
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Supplementary Table 21871 Quarter 4 Median DatasetFactor Loadings;i DNL O i ndi cat es
that a variable did meet the 0.6 loading criterion on any factor

Alkal inity 77 -38 -37 16
TOC -3 3 95 -16
Chloride 86 6 33 13
COD -2 40 89 0
DO -5 -40 0 83
Hardness 85 -31 -27 15
TKN 40 51 69 3
NO2 + NO3 78 -5 -22 -2
pH 17 21 -13 89
Total P 70 42 39 0
TSS -4 95 15 3
SC 97 -8 14 7
Sulfate 83 23 24 -11
Temperature 28 73 19 -1
Turbidity -16 95 12 1
Iron -25 85 18 -23 Final Communality
Eigenvalue 5.149 4.166 2.886 1.631 13.832
% Variance
Explained 32.1813 26.0375 18.0375 10.1938 86.45

Supplementary Table 21971 Quarter 4 Trimmed Mean DatasetFactor Loadings; i D NL 0
indicates that a variable did meet the 0.6 loading criterion on any factor

Alkalinity 77 -33 -38 20
TOC -8 8 91 -12
Chloride 83 -16 39 8
COD -1 38 90 0
DO -7 -31 1 89
Hardness 86 -28 -29 17
TKN 40 34 80 3
NO2 + NO3 80 -7 -18 7
pH 20 25 -10 87
Total P 69 29 a7 -4
TSS 0 93 23 -2
SC 96 -15 18 5
Sulfate 82 11 25 -20
Temperature DNL DNL DNL DNL
Turbidity -16 93 22 4
Iron -22 91 16 -11 Final Communality
Eigenvalue 4.99 3.309 3.159 1.705 13.163
% Variance 33.2667 22.06 21.06 11.3667 87.75333333
Explained
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Supplementary Table 2201 Quarter 4 Geometric Mean DatasetFactor Loadings;i DN L 0
indicates that a variable did meet the 0.6 loading criterion on any factor

Alkalinity 78 -40 -33 13
TOC -5 5 96 -13
Chloride 86 2 36 10
COD -1 37 91 0
DO -2 -29 3 88
Hardness 87 -31 -25 14
TKN 35 40 79 4
NO2 + NO3 83 -3 -12 7
pH 17 10 -10 89
Total P 67 40 44 -1
TSS 2 96 13 1
SC 96 -5 17 6
Sulfate 83 23 24 -14
Temperature 24 73 31 -5
Turbidity -18 93 18 -1
Iron -21 88 14 -23 Final Communality
Variance Explained 5.136 3.973 3.138 1.707 13.955
32.1 24.8313 19.6125 10.6688 87.21875
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Hotellingbs PaparsomiTestse Cl uster Com

Supplementary Table 31T Pai r wi s e Hwalues forlthe angualsggeometric mean
factor clustersst est s t hat indicate clusters are not di
and tests that fail due tdack of samples are highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster5

Cluster 1 0 0.000 0.001 0.000 2.76E05
Cluster 2 0 4.71E09 0.000 1.92E05
Cluster 3 0 2.80E05 9.16E07
Cluster 4 0 1.05E05
Cluster 5 0

Supplementary Table 321 Pai r wi s e Hwalues forlthe angualsnegn factor
Clusterst est s that indicate clusters are not diffe
that fail due to lack of samples are highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster5 Cluster 6

Cluster 1 0 3.21E08 8.38E06 2.83E06 2.01E06 0.000
Cluster 2 0 0.000 5.09E08 4.90E05 0.00L
Cluster 3 0 0.001 5.45E06 0.00L
Cluster 4 0 2.37E06 0.001
Cluster 5 0 5.33E05
Cluster 6 0

Supplementary Table 3371 Pai r wi s e Hwalues forlthe angualsnedian factor
clusters testst h a t i ndicate clusters are not di fferent
that fail due to lack of samples are highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster5

Cluster 1 0 0.001 0.000 0.001 6.50E08
Cluster 2 0 1.78E06 0.000  3.3%-05
Cluster 3 0 4.34E06 2.22E07
Cluster 4 0 0.001
Cluster 5 0
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Supplementary Table 3471 Pai r wi s e Hwalues forlthe angualdrimmed mean
factorclustersst est s that indicate clusters devee not di
and tests that fail due tdack of samples are highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster5

Cluster 1 0 1.75E05 9.45E06 4.49E05 6.93E05
Cluster 2 0 0.001 0.002 0.001
Cluster 3 0 7.95£09 7.20E07
Cluster 4 0 5.96E05
Cluster 5 0

Supplementary Table 35T Pai r wi s e Hwalues forlthe gugrtersl ggometric mean
factorclusterst est s t hat i ndicate clusters are not di
and tests that fail due tdack of samples are highbhted

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster5

Cluster 1 0 3.63E07 0.001 7.89E06 2.03E09
Cluster 2 0 7.57E05 0.000 1.06E06
Cluster 3 0 0.0309 1.83E07
Cluster 4 0 0.001
Cluster 5 0
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Supplementary Table 361 Pairwi s e H ot @dluksifan thedgaartgr 1 mean factor

clusters, tests that indicate clusters are not differentatatJ =0 . 0 5
that fail due to lack of samples are highlighted

significance

Cluste Cluste Cluste Cluste Cluste Cluste Cluste Cluste Cluste Cluster
ri r2 r3 r4 r5 roé r7 r8 r9 10
Cluster 0 0.015 Fail 0.0 Fail 0.0@2 0.030 Fail Fail 0.007
1
Cluster 0 0.019 8.27E 0.0® 0.000 0.0ZZ 0.0 0.027 0.013
2 07
Cluster 0 0.007 Fail 0.00L  0.051 Fail Fail 0.178
3
Cluster 0 9.64E 7.73E 3.51E 1.61E 0.000 3.90E
4 05 06 06 05 05
Cluster 0 0.002 0.0633 Fall Fail 0.032
5
Cluster 0 0.0 0.107 o0.011 0.002
6
Cluster 0 0.111 0.1 0.033
7
Cluster 0 Fail 0.0162
8
Cluster 0 0.01%6
9
Cluster 0
10

Supplementary Table 371 Pai r wi s e Hwalues forlthe guartersl median factor

clusters tests that indicateclus er s ar e not di fferent at
that fail due to lack of samples are highlighted
Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster
1 2 3 4 5 6 7 8 9
C'“fter 0 0.000 0120 0004 0.08 Fall Fail Fail 0.067
C'uzs'ter 0 0.002 3'825 0000 0000 0012 007  0.000
C'“:fter 0 4'325 0169  Fail Fail Fail  0.033
Cluster 253E 3.61E
4 0 0.000 0.0016 05 05 0.001
C'“g'ter 0 0117 0448  0.090  0.002
C'“gter 0 Fail Fal 014
C'“;"ter 0 Fal 0118
Clugter 0 0.164
Cluster
E 0
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Supplementary Table 381 Pai r wi s e

Hwalties forlthe quartiersl trimmed mean

factorclusterst est s t hat i ndicate clusters are
and tests that fail due tdack of samples are highlighted
Cluster Cluster Cluster Cluster 4 Cluster Cluster Cluster Cluster
1 2 3 5 6 7 8
Cluster 0 0.000 0.00L 0.004 0.000 1.90E 0.000 1.35E
1 05 05
Cluster 0 Fail Fail 0.013 0.090 0.040 1.77&
2 05
Cluster 0 Fail 0.0(8 0.015 0.023 7.86E
3 05
Cluster 0 0.001 0.013 0.018 0.06
4
Cluster 0 0.0 0.001 9.23E
5 07
Cluster 0 0.013 0.000
6
Cluster 0 5.51E
7 08
Cluster 0
8

Supplementary Table 39T Pai r wi s e

Hwalties forlthe qugrtiers2 ggometric mean

factorclusterst est s t hat i ndicate clusters are
and tests that fail due tdack of samples are highlighted
Cluster Cluster Cluster 3 Cluster 4 Cluster5 Cluster 6 Cluster 7
1 2

Cluster 0 0.000 0.000 0.061 0.001 0.090 0.00
1

Cluster 0 2.82E06 2.65E05 0.000 8.43E06 4.60E05
2

Cluster 0 0.001 0.001 0.002 3.21E05
3

Cluster 0 0.001 Fail 0.001
4

Cluster 0 0.002 1.26E05
5

Cluster 0 3.33E05
6

Cluster 0
7
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Supplementary Table 31071 Pairwise Hotd | i n\@l@es forghe quarter 2 mean factor
clusterst ests that indicate clusters are not diffe
that fail due to lack of samples are highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster5

Cluster 1 0 1.19E05 2.28E06 0.00L 8.06E06
Cluster 2 0 1.92E06 2.15E06 0.000
Cluster 3 0 6.07E06 5.90E06
Cluster 4 0 0.001
Cluster 5 0

Supplementary Table 31171 Pai r wi s e Hwalues forlthe guarters2 mpdian factor
clusterst est s that indicate cl| ust ericanceleved andtests di f f e
that fail due to lack of samples are highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster5

Cluster 1 0 2.40E05 3.01E06 0.08 7.09E05
Cluster 2 0 3.05e05 4.75e08 1.75E05
Cluster 3 0 9.63E06 0.000
Cluster 4 0 1.95E06
Cluster 5 0

Supplementary Table 3127 Pai r wi s e Hwalues forlthe quarters2 trimmed mean
factorclusterst est s t hat i ndicate clusters are not di
and tests that fail due to lack of samplesra highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster5 Cluster6 Cluster?

Cluster 1 0 3.36E05 0.001 3.16E06 0.000 8.60E05 1.38E05
Cluster 2 0 4.75E06 0.147 0.065 0.000 0.005
Cluster 3 0 0.000 0.001 3.01E06 4.75E05
Cluster 4 0 0.033 4.11E05 0.000
Cluster 5 0 0.000 0.000
Cluster 6 0 4.53E05
Cluster 7 0
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Supplementary Table 31371 Pai r wi s e
factor clusters, tests that indicate clusters are not different at n

and tests that fail due tdack of samples are highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster5

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5

0

5.67E06 7.74E06 2.42E06
6.75E05 7.14E05 3.66E05

0

0

0.000
0

0.000

0.000
0.001
0

Supplementary Table 3147 Pai r wi s e
Clusterst est s

t hat

i ndi

cate

that fail due to lack of samples are highlighted

ar e

Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster5 Cluster6 Cluster7

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7

0

3.94E05
0

0.003
1.52E06
0

0.037

0.001

0.022
0

0.000

0.000

0.0

0.003
0

4.84E05
0.000
0.000
0.008
0.006
0

0.003
1.04E06
0.004
0.06
0.021
0.004
0

Supplementary Table 31571 Pai r wi s e

clusterst est s t hat i ndi cate
that fail due to lack of samples are highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster5
Cluster 1 0 445606 1.29E06 9.96E06 3.89E06
Cluster 2 0 8.12-08 1.58E05 0.000
Cluster 3 0 2.57E05 0.000
Cluster 4 0 0.000
Cluster 5 0
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Supplementary Table 3167 Pai r wi s e Hwalues forlthe quarters3 trimmed mean
factor clustersst est s t hat indicate cl| uGhsignifimncalevel
and tests that fail due tdack of samples are highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster5

Cluster 1 0 0.00L 1.13E06 0.000 2.12E06
Cluster 2 0 2.02E05 0.0 0.000
Cluster 3 0 0.000 1.20E06
Cluster 4 0 2.54E06
Cluster 5 0

Supplementary Table 31771 Pai r wi s e Hwalues forlthie gugrtiers4 ggometric mean
factorclusterst est s that indicate clusters are
and tests that fail due to lack of samlesare highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster5 Cluster6 Cluster7

Cluster 1 0 1.89E05 4.19E05 0.004 2.90E05 0.017 2.57E06
Cluster 2 0 8.45E08 0.005 1.22E05 0.00L 0.000
Cluster 3 0 3.18606 8.71E05 0.000 0.001
Cluster 4 0 1.97E06 0.120 0.001
Cluster 5 0 0.00L 7.93E06
Cluster 6 0 0.007
Cluster 7 0

Supplementary Table 3187 Pai r wi s e Hwalues forlthe quarters4 mpan factor
clusterst est s t hat indicate clusters are not
that fail due to lack of samples are highlighted

0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster5
Cluster 1 0 3.81E03 4.39E04 3.32E06 0.001
Cluster 2 0 0.000 6.30E07 2.38E04
Cluster 3 0 0.000 2.29E07
Cluster 4 0 0.000
Cluster 5 0
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Supplementary Table 3197 Pai r wi s e Hwaltes forlthe quartier €t median factor
clusters;t est s that indicate cl| ust eificancedavetandtests di f f e
that fail due to lack of samples are highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster5 Cluster6 Cluster?

Cluster 1 0 3.78E06 0.001 0.000 0.001 0.133 0.000
Cluster 2 0 2.99E05 2.28E05 1.67E05 0.002 0.001
Cluster 3 0 0.0@ 0.00L 0.066 0.000
Cluster 4 0 0.000 0.027 0.001
Cluster 5 0 0.00L 3.11E06
Cluster 6 0 0.047
Cluster 7 0

Supplementary Table 3201 Pai r wi s e Hwalues forlthe guarters4 trimmed mean
factor clusters;testshat i ndicate clusters are not differe
and tests that fail due tdack of samples are highlighted

Cluster 1 Cluster 2 Cluster 3 Cluster4 Cluster5 Cluster 6

Cluster 1 0 5.46E05 5.22E07 8.34E09 5.15E06 1.43E06
Cluster 2 0 45707 3.20E05 0.002 0.001
Cluster 3 0 0.001 1.18605 4.11E07
Cluster 4 0 0.008 0.001
Cluster 5 0 0.000
Cluster 6 0
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IDEM Station Cluster Assignments

Supplementary Table 411 Annual Factor Cluster Assignments

BL-.7

BL-64

BWC-4

CiC-17

EC-1

EC-21

EC-7

EEL-1

EEL-38

EW-1

EW-168

EW-239

EW-79

EW-94

FC-0.6

FC-26

FC-7

FR-17

FR-64

GC-8

IN-2

IwC-9

LST-2

MC-18

MC-35

MU-20

SGR-1

SLT-12

SND-4

VF-38

WLC -2

WR-134

WR-162

WR-19

WR-192

WR-210

WR-248

WR-279

WR-293

WR-309

WR-319

WR-348

WR-46
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AR WRRPRP®OERPRPERPARBRROONOOAOAWOAIWOAOFROINWWNWNOOOGOIWW OO0 NRFRINPFP®WEFEW
WP WWRFRRPON KPR OBR WO WOAIA R WOAN®DAOBRRPNADNRPWOWRRPRPRPOWRAIDNPFPROWE

WR-81
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Supplementary Table 421 Quarter 1 Factor Cluster Assignments

Station name Geomean (5) Mean (10) Median (9) Trimmed Mean (8)

BL-.7 2 7 9 1
BL-64 5 2 3 7
BWC-4 2 10 5 1
Cic-17 2 10 1 1
EC-1 5 8 4 6
EC-21 5 2 4 7
EC-7 4 8 4 2
EEL-1 1 4 2 8
EEL-38 1 4 2 8
EW-1 1 4 2 8
EW-168 1 10 2 8
EW-239 2 10 9 1
EW-79 1 4 2 8
EW-94 1 4 2 8
FC-0.6 5 6 4 5
FC-26 5 2 5 7
FC-7 5 2 3 7
FR-17 2 7 5 1
FR-64 2 2 5 7
GC-8 4 9 6 2
IN-2 3 3 7 4
IWC-9 5 6 4 5
LST-2 3 3 7 4
MC-18 2 10 1 1
MC-35 2 2 1 7
MU-20 3 5 8 3
SGR-1 2 7 9 1
SLT-12 3 5 8 3
SND-4 2 4 5 8
VF-38 4 9 6 2
WLC -2 2 6 9 5
WR-134 1 4 2 8
WR-162 5 1 2 6
WR-19 1 4 2 8
WR-192 5 1 3 6
WR-210 5 1 3 6
WR-248 5 6 4 5
WR-279 5 6 4 5
WR-293 5 6 4 5
WR-309 5 6 4 5
WR-319 5 2 1 7
WR-348 2 7 9 1
WR-46 1 4 2 8
WR-81 1 4 2 8
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Supplementry Table 4371 Quarter 2 Factor Cluster Assignments

BL-.7

BL-64

BWC-4

CiCc-17

EC-1

EC-21

EC-7

EEL-1

EEL-38

EW-1

EW-168

EW-239

EW-79

EW-94

FC-0.6

FC-26

FC-7

FR-17

FR-64

GC-8

IN-2

IWC-9

LST-2

MC-18

MC-35

MU-20

SGR-1

SLT-12

SND-4

VF-38

WLC -2

WR-134

WR-162

WR-19

WR-192

WR-210

WR-248

WR-279

WR-293

WR-309

WR-319

WR-348

WR-46
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AIRARNWWWWWWWABRENONEINPEFPONRPRPOROOAONDNOONORMELPININIABAIDMOAOWOAININDIWN
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WR-81
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Supplementary Table 441 Quarter 3 Factor Cluster Assignments

5

©
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Supplementary Table 451 Quarter 4 Factor Cluster Assignments

Station name Geomean (7) Mean (5) Median (7) Trimmed Mean (6)
BL-.7 5 1 2
BL-64
BWC-4
ClC-17
EC-1
EC-21
EC-7
EEL-1
EEL-38
EW-1
EW-168
EW-239
EW-79
EW-94
FC-0.6
FC-26
FC-7
FR-17
FR-64
GC-8
IN-2
IWC -9
LST-2
MC-18
MC-35
MU-20
SGR-1
SLT-12
SND-4
VF-38
WLC -2
WR-134
WR-162
WR-19
WR-192
WR-210
WR-248
WR-279
WR-293
WR-309
WR-319
WR-348
WR-46
WR-81

N~NPFPPRPWOWOWWWWWWNNNOOOORL,PPOOPMOAONPDEWPAROOOORFR, OOFRPDNNONDNMNDNNRPERPWEREREROOW
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Supplementary Table 461 Annual SOM Cluster Assignments

BL-.7

BL-64

BWC-4

CiCc-17

EC-1

EC-21

EC-7

EEL-1

EEL-38

EW-1

EW-168

EW-239

EW-79

EW-94

FC-0.6

FC-26

FC-7

FR-17

FR-64

GC-8

IN-2

IWC-9

LST-2

MC-18

MC-35

MU-20

SGR-1

SLT-12

SND-4

VF-38

WLC -2

WR-134

WR-162

WR-19

WR-192

WR-210

WR-248

WR-279

WR-293

WR-309

WR-319

WR-348

WR-46
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WR-81
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Supplementary Table 471 Quarter 1 SOM Cluster Assignments

Station Name Geomean (9) Mean (7) Median (6) Trimmed Mean (6)
BL-.7 1 7 3
BL-64
BWC-4
CiC-17
EC-1
EC-21
EC-7
EEL-1
EEL-38
EW-1
EW-168
EW-239
EW-79
EW-94
FC-0.6
FC-26
FC-7
FR-17
FR-64
GC-8
IN-2
IWC -9
LST-2
MC-18
MC-35
MU-20
SGR-1
SLT-12
SND-4
VF-38
WLC -2
WR-134
WR-162
WR-19
WR-192
WR-210
WR-248
WR-279
WR-293
WR-309
WR-319
WR-348
WR-46
WR-81
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Supplementary Table 481 Quarter 2 SOM Cluster Assignments

BL-.7 3 8 4 2
BL-64 3 6 4 2
BWC-4 2 5 2 2
Cic-17 3 6 4 2
EC-1 6 2 6 4
EC-21 3 6 4 2
EC-7 6 2 6 4
EEL-1 5 7 5 6
EEL-38 5 7 5 3
EW-1 5 7 5 3
EW-168 2 5 2 2
EW-239 3 8 2 2
EW-79 5 4 5 3
EW-94 5 7 5 3
FC-0.6 6 2 6 4
FC-26 3 6 4 2
FC-7 2 2 6 4
FR-17 3 8 2 2
FR-64 3 8 2 2
GC-8 4 4 3 3
IN-2 1 1 1 1
IWC -9 7 3 7 5
LST-2 1 1 1 1
MC-18 2 5 2 2
MC-35 3 8 2 2
MU-20 4 4 5 3
SGR-1 3 5 4 2
SLT-12 1 1 1 1
SND-4 2 5 2 3
VF-38 4 4 3 3
WLC -2 6 2 4 4
WR-134 8 9 8 6
WR-162 8 9 8 6
WR-19 8 9 8 6
WR-192 9 3 7 5
WR-210 9 3 7 5
WR-248 7 3 7 5
WR-279 7 3 I 5
WR-293 7 3 l 5
WR-309 7 3 I 5
WR-319 2 5 2 2
WR-348 3 8 2 2
WR-46 8 9 8 6
WR-81 8 9 8 6
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Supplementary Table 491 Quarter 3 SOM Cluster Assignments

5
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Supplementary Table 4107 Quarter 4 SOM Cluster Assignments

Station Name Geomean (5) Mean (5) Median (6) Trimmed Mean (7)
BL-.7 5 3 6
BL-64
BWC-4
CIC-17
EC-1
EC-21
EC-7
EEL-1
EEL-38
EW-1
EW-168
EW-239
EW-79
EW-94
FC-0.6
FC-26
FC-7
FR-17
FR-64
GC-8
IN-2
IWC-9
LST-2
MC-18
MC-35
MU-20
SGR-1
SLT-12
SND-4
VF-38
WLC -2
WR-134
WR-162
WR-19
WR-192
WR-210
WR-248
WR-279
WR-293
WR-309
WR-319
WR-348
WR-46
WR-81

WwoaoakrRrFErFPrPENMNNDNONMNNNPEMAARMMOOPOOOO SRR, ™Moo oaorrbdbbooaobsbs,bdAPRPRPDNEOPRE
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Cluster Comparison-Tests

SupplementaryTable 51¢¢ KS | yydzt f a S| y-te€Creddlis HiNktédrhindng ifl tleNd@ad ofdeach variable in a given cluster was

AAAYATAOIYyGte RATTSNBY larable forakofithestatipist y G KS YSHy 2F (KL G &

Cluster Clwster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |

LET

Variable Dataset Clustered 1 5 7 8 9 10
Alkalinity Annual Mean Factors M/V
Total Organic Carbon Annual Mean Factors M/V
Chloride Annual Mean Faors
Chemical Oxygen Demand Annual Mean Factors
Dissolved Oxygen Annual Mean Factors
Hardness Annual Mean Factors
Totd Kjeldahl Nitrogen Annual Mean Factors
Nitrate + Nitrite Annual Mean Factors
pH Annual Mean Factors
Total Phosphorus Annual Mean Factors
Total Suspended Solids Annual Mean Factors
Specific Conductance Annual Mean Factors
Sulfate Annual Mean Factors
Temperature AnnualMean Factors
Turbidity Annual Mean Factors

Iron Annual Mean Factors




Supplementary Table 2.¢¢ KS | yydzt £ a SRA -tgst r&Sult©for 2dtdrnininglifithie §dkh 61 eath variableangiven cluster

8€T

gl a AAIAYATAOLYyGf & RATTSNGayable formlofitiestptions G K1y GKS YSIy 2F GKIG O
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Quster Cluster Cluster Cluster Cluster
1 2 3 4 5 6 7 8 9 10
Alkalinity Annual Median Factors

Total Organic Carbon
Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus
Total Suspended Sdé
Specific Conductance
Sulfate

Temperature
Turbidity

Iron

Annual Median Factors
Annual Median Factors
Annual Median Factors
Annual Median Factors
Annual Median Factors
Annual Median Facts

Annual Median Factors
Annual Median Factors
Annual Median Factors
Annual Median Factors
Annual Median Factors
Annual Median Factors
Annual Median Factors
Annual Median Factors
Annual Median Factors
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Supplementary Table B.¢¢ KS ! yydzt £ ¢ NR YYSR -esbresyits ©rdEiéntnidg ifGHe dmiaid & éaBhQarigble in a given
Of dza GSNJ 618 AAIYATAOIY(Gf & RAaHaDIEMBIolthestatbns dnp o GKEY G(KS Y8y 27

Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster

Variable Dataset Clustered 1 5 3 4 5 6 7 8 9 10
Alkalinity Anmual Trimmed Mean Factors M/V
Total Organic Carbon Annual Trimmed Mean Factors M/V M/V
Chloride Annual Trimmed Mean Factors “_ MV
Chemical Oxygen Demand Annual Trimmed Mean Faufs M/V M/V M/V
Dissolved Oxygen Annual Trimmed Mean Factors = M/V M/V
Hardness Annual Trimmed Mean Factors - M/V
Total Kjeldahl Nitrogen Annual Trimmed Mean Factors
Nitrate + Nitrite Annual Trimmed Mean Factors
pH Annual Trimmed Mean Factors
Total Phosphorus Annual Trimmed Mean Factors
Total Suspended Solids Annual Trimmed Mean Factors
Specific Conductance Annual Trimmed Mean Factors
Sulfate Annual Trimmed Mean Factors
Temperature Annual Trimmed Mean Factors
Turbidity Annual Trimmed Mean Factors

Iron Annual Trimmed Mean Factors
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Supplementary Table 8.¢¢ K S

| VY dzh
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Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster
1 2 3 6 7 8 9 10
Alkalinity Annual Geomean Factors M/V

Total Organic Carbon
Chloride

Chemical Oxygen Demand
Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidty

Iron

Annual Geomean Factors
Annual Geomean Factors
Annual Geomean Factors
Annual Geomean Factors
Annual Geomean Factors
Annual Geomean Factors
Annual Geomean Factors
Annual Geomean Factors
Annual Geomean Factors
Annual Geoman Factors

Annual Geomean Factors
Annual Geomean Factors
Annual Geomean Factors
Annual Geomean Factors
Annual Geomean Factors
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Supplementary Table 5.¢¢ K S

v dzI NI SNJ wm

a S-esf reddlts @iidatdtmiting dzBeimeahBf@acks vatike in a given cluster

gl a arayAFTAOLyGte RATTS NKayable formlloftigesstptions 6 Ky GKS YSIy 2F (KIF
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster
1 2 3 4 5 6 7 8 9 10
Alkalinity Q1 Mean Factors

Total Organic Carbon

Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen

Nitrate + Nitrite
pH
Total Phosphorus

Total Suspended Solids
Specific Conductance

Sulfate
Temperature
Turbidity
Iron

Q1 Mean Factors
Q1 Mean Factors
Q1 Mean Factors
Q1 Mean Factors
Q1 Mean Factors
Q1 Mean Factors
Q1 Mean Factors
Q1 Mean Factors
Q1 Mean Factors
Q1 Mean Factar

Q1 Mean Factors
Q1 Mean Factors
Q1 Mean Factors
Q1 Mean Factors
Q1 Mean Factors
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Supplementary Table 6.c¢ K S

v dzI NI SNJ wm

a S Rtast rgsult€ for Aéte2nNdin@if thizdnéa8 dfka@h vieble in a given cluster

gl a aAIAYATAOLIy(dfe RATTSNGayable formlofitiestations § K1y GKS YSIy 2F GKI
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster
1 2 3 4 7 8 9 10
Alkalinty Q1 Median Factors M/V

Total Organic Carbon

Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen

Nitrate + Nitrite
pH
Total Phosphorus

Total Suspended Solids
Specific Conductance

Sulfate
Temperature
Turbidity
Iron

Q1 Median Factors
Q1 Median Factors
Q1 Median Factors
Q1 Median Factors
Q1 Median Factors
Q1 Median Factors
Q1 Median Factors
Q1 Median Factors
Q1 Median Factors
Q1 Median Facte

Q1 Median Factors
Q1 Median Factors
Q1 Median Factors
Q1 Median Factors
Q1 Median Factors

M/IV
M/V
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Supplementary Table 3.c The Quarter 1L TrimmR a S|y C|I O (+eshksaits foraléiesMin@if tlie mean ofach variable in a given

Of dzZa G SNJ 6t a &AAIYATAOLIYy Gt & RAafabISMBIofithestatibns dnpo GKFyYy GKS YSIy 27
Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster

Variable

Dataset Clustered

Alkalnity

Total Organic Carbon
Chloride

Chemical Oxygen Demand
Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids
Specific Conductance
Sulfate

Tenperature

Turbidity

Iron

Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factors
Q1 Trifmed Mean Factors
Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factsr

Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factors
Q1 Trimmed Mean Factors

1

2

3

4

5

6

7

8

9

10
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Supplementary Table B.c¢ K S

v dzI NI SNJ wm
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AAPSYy Of dzaliSNJ 6+ a AAAYATAOL Yyt ariaboFallBiNSstationsoh Fndnpy GKE Y
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster
1 2 3 4 5 6 7 8 9 10
Alkalinity Q1 Geomean Factors

Total Organic Carbon
Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids

Specific Conductance
Sulfate

Temperature
Turbidity

Iron

Q1 Geomean Factors
Q1 Geomean Factors
Q1 Geomean Factors
Q1 Geomean Factors
Q1 Geomean Factors
Q1 Geomean Factors
Q1 Geomean Facate

Q1 Geomean Factors
Q1 Geomean Factors
Q1 Geomean Factors
Q1 Gomean Factors
Q1 Geomean Factors
Q1 Geomean Factors
Q1 Geomean Factors
Q1 Geomean Factors

-

-
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Supplementary Table 8.c¢ K S

v dzI NI SNJ H

a S-tesf reddlts @iidatdtmiting dzBelmeanBdf@ack variable in agn cluster

gl a AAIAYATFTAOLYy(Gf & RATTSNEBayable formlofitidesstptions i K1y G(KS YSIy 2F GKI G
Variabl Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |
ariable ataset Clustere 1 5 3 4 5 6 7 8 9 10
Alkalinity Q2 Mean Factors [HIGH Low [HIGH | MV

Total Organic Carbon
Chloride

Chemical Oxygen Demand
Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Q2 Mean Factors M/V
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors
Q2 Mean Factors

M/V

NEIGHN vV
wy IEIGHITEOWTE v

M/ M/ M/V
FHIGH Low [HIGH™ wm/v

vy [HIGHE Low  mv

M/V

M/V

My FEOWEE MV

M/V MV

MV
M/V

M/V

M/V

M/V
M/V

MV
M/V

MV
MV
M/V MV

Jow v

M/
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Supplenentary Table 510¢ ¢ K S

v dzZ NI SNJ H

a S Rtast rgsult€ for@ete2nmidin@if thizinéal dfRa@h vériable in a given

Of dZAGSNJ 61 a AAAYAFAOlIyGfte RAFTFSNByld ohdnednpo GKIy G4KS YSty 27
Variabl Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |
ariable ataset Clustere 1 5 3 4 5 6 7 8 9 10
Alkalinity Q2 Medan Factors

Total Organic Carbon

Chloride

Chemical Oxygen Demand

DissolvedOxygen
Hardness

Total Kjeldahl Nitrogen

Nitrate + Nitrite
pH
Total Phosphorus

Total Suspended Solids

Specific Conductance

Sulfate
Temperature
Turbidity
Iron

Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors
Q2 Median Factors

0 KI
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Supplementary Table 81¢¢ K S
given cluster was significantiR A ¥ F SNB y

v dzZ NI SNJ H

¢ NR Y'Y S-Rst rasbits for deterr@ining iKtheQrealzdfle&NEartabletin a

6h T'ndnp Gariabl&forll ofitheStatvynS | y 2F GKI G @

Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |

Variable Dataset Clustred 1 5 3 4 5 6 7 8 9 10
Alkalinity Q2 Trimmed Mean Factors MV M/V MV
Total Organic Carbon Q2 Trimmed Mean Factors M/ _ M/V M/V - M/V
Chloride Q2 Trimmed Mean Factors _ M/V _

Chemical Oxygen Demand
Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Q2 Trimmed Mean Factors
Q2 Trimmed Mean Factors
Q2 TrimmedViean Factors

Q2 Trimmed Mean Factors
Q2 Trimmed Mean Factors
Q2 Trimmed Mean Factors
Q2 Trimmed Mean Factors
Q2 Trimmed Mean Factors
Q2 Trimmed Mean Factors
Q2 Trimmed Mean Factors
Q2 Trimmed Mean Factors
Q2 Trimmed Mean Factors
Q2 Trimmed Mean Factors

MV
JLOWE miv

Low . mv
REIGHN vV
MV
MV

MV MV

FEOWEE MV
MV

MV

M/V
M/V M/V MV
wv W v

MV MV
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Supplementary Table 82¢ ¢ K S

v dzZ NI SNJ H

DS 2 Y S i N@stQesudtSior dete@inidgiifzhidnéxn afzadhS bR in &

0KS

IAPSYy Ot dzaGSNJ 61 a &AIYATAOI yitiaf variabe XoFall & MBsfationso h I'ndnp o G Ky

Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster
1 2 3 4 5 6 7 8 9 10

Alkalinity Q2 Geomean Factors M/V

Total Organic Carbon Q2 Geomean Factors M/ M/ M/V _ MV

Chloride Q2 Geomean Factors _ MV

Chemical Oxygen Demand Q2 Geomean Factors M/V M/V M/V

Dissolved Oxygen Q2 Geomean Factors - M/ - M/V

Hardness Q2 Geomean Factors M/V

Total Kjeldahl Nitrogen Q2 Geomean Factors M/V M/V MV

Nitrate + Nitrite Q2 Geomean Factors MV - M/

pH Q2 Geomean Factors M/V M/V M/V

Total Phosphorus Q2 Geomean Factors M/V M/V M/V

Total Suspended Solids Q2 Geomean Factors fow | mv

Specific Conductance Q2 Geomean Factors M/V

Sulfate Q2 Geomean Factors M/V

Temperature Q2 Geomean Factors M/V M/V M/V

Turbidity Q2 Geomean Factors M/V

Iron Q2 Gemean Factors M/V
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Supplementary Table 83¢ The Quar§ NJ o

aSly Cl-t6stirgshiis Orfdetsniinthdliftiez meéan of each variable in a given cluster
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. Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster
Variable Dataset Clustered
6 7 8 9 10
Alkalinity Q3 Mean Factors

Total Organic Carbon
Chloride

Chemical Oxygen Demand
Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors
Q3 Mean Factors




Supplementary Table 34¢¢ KS v dzt NIl SNJ o a S Rt&st rgsult€ forQeéte2midin®if tiizdngal df&agh variable in a given

cluster was significantly differg i o6 h I' n dnp 0 { K| aiablé &Sl of tBesiatiodsT G Kl G @

Cluster Cluster Cluste Cluster Cluster Cluster Cluster Cluster Cluster Cluster |

04T

Variable Dataset Clustered 1 5 3 4 5 6 7 8 9 10
Alkalinity Q3 Median Factors
Total Organic Carbon Q3 Median Factors
Chloride Q3 Median Factors
Chemical Oxygen Demand Q3 Median Factors
Dissolved Oxygen Q3 Median Factors
Hardness Q3 Median Factors
Total Kjeldahl Nitrogen Q3 Median Factors
Nitrate + Nitrite Q3 Median Factors
pH Q3 Median Factors
Total Phosphorus Q3 Median Factors
Total Suspended Solids Q3 Median Faors
Specific Conductance Q3 Median Factors
Sulfate Q3 Median Factors
Temperature Q3 Median Factors
Turbidity Q3 Median Factors

Iron Q3 Median Factors
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Supplementary Table 85¢ ¢ K S

v dzZ NIl SNJ o
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iabl D cl d Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |
Variable ataset Clustere 1 5 3 4 5 6 7 8 9 10
Alkalinity Q3 Trimmed Mean Factors

Total Organic Carbon
Chloride

Chemical Oxygen Demand
Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Q3 Trimmed Mean Factors
Q3 Trimmed Mean Factors
Q3 Trimmed Mean Factors
Q3Trimmed Mean Factors
Q3 Trimmed Mean Factors
Q3 Trimmed Mean Factors
Q3 Trimmed Mean Factors
Q3 Trimmed Mean Factors
Q3 Trimmed Mean Factors
Q3 Trimmed Mean Factors
Q3 Tnmmed Mean Factors
Q3 Trimmed Mean Factors
Q3 Trimmed Mean Factors
Q3 Trimmed Mean Factors
Q3Trimmed Mean Factors

wv - [EEIGHILow T miv

M/V M/V M/V
NAGERMAGHMIOW /v v
RHIGHIMHIGHN /v NLOWM /v

BRIGHN vV FLow EOW T miv
Low  TEOWSH My m/v

REIGHN v

MV MV
NEICEN v
MV

M/V

M/V
M/V
M/V
M/V

M/V
MV
M/V M/V
M/V MV
MV

M/V

M/V
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Supplementary Table 86 ¢ The Quarter 3 Geometric Mean Bali 2 NJ O ftestaesufiNdGr @etegnining if the mean of each variable in a
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Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |

Variable Dataset Clustered 1 5 3 4 5 6 7 8 9 10
Alkalinity Q3 Geomean Factors M/V
Total Organic Carlmo Q3 Geomean Factors MV M/V M/V - MV
Chloride Q3 Geomean Factors M/V _ M/V MV
Chemical Oxygen Demand Q3 Geomean Factors - MV M/V - M/V
Dissolved Oxygen Q3 Geomean Factors - M/ - MV

Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids

Specific Conductance
Sulfate

Temperature
Turbidity

Iron

Q3 Geomean Factors
Q3 Geomean Factors
Q3 Geomean Factors
Q3 Geomean Factors
Q3 Geomean Factors
Q3 Geomean Factors
Q3 Geomean Factors
Q3 Geomean Factors
Q3 Geomean Factors
Q3 Geomean Factors
Q3 Geomean Factors
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Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |

€at

Variable Dataset Clustered 1 5 3 4 5 6 - 8 9 10
Alkalinity Q4 Mean Factors
Total Organic Carbon Q4 Mean Factors
Chloride Q4 Mean Factors
Chemg¢al Oxygen Demand Q4 Mean Factors
Dissolved Oxygen Q4 Mean Factors
Hardness Q4 Mean Factors
Total Kjeldahl Nitrogen Q4 Mean Factors
Nitrate + Nitrite Q4 Mean Factors
pH Q4 Mean Factors
Total Phosphorus Q4 Mean Factors
Total Suspended Solids Q4 Mean Factors
Specific Conductance Q4 Mean Factors
Sulfate Q4 Mean Factors
Temperature Q4 Mean Factors
Turbidity Q4 Mean Factors

Iron Q4 Men Factors
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Supplementay Table 518¢ ¢ K S
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Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |
! settAus 1 2 3 4 5 6 7 8 9 10
Alkalinity Q4 Median Factors M/V M/V

Total Organic Carbon

Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen

Nitrate + Nitrite
pH
Total Phosphorus

Total Suspended Solids

Specific Conductance

Sulfate
Temperature
Turbidity
Iron

Q4 Median Factrs

Q4 Median Factors
Q4 Median Factors
Q4 Median Factors
Q4 Median Factors
Q4 Median Factors
Q4 Median Factors
Q4 Median Factors
Q4 Median Factors
Q4 Median Factors
Q4 Median Factors
Q4 Median Factors
Q4 Median Factors
Q4 Median Factors
Q4 Median Factors

M/V

REIGHN vV
FEOWCE miv
MV

NEIGHN vV

MV

MV MV

MV

vy oW

i KI

(
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Supplementary Tald 519¢ ¢ K S

givenclusterwast A Ay AFA Ol yif @
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Variable

Dataset Clustered

Cluster
1

Alkalinity

Total Organic Carbon
Chloride

Chemical Oxygen Demand
Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphrus

Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Timmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors
Q4 Trimmed Mean Factors

Cluster
2

Cluster
3

M/V
M/V

MV
MV

Cluster
4

M/V

Cluster
5

Cluster
6

MV
MV

MV
MV

MV

Cluster
7

Cluster
8

Cluster
9

Cluster |

10

aKIFQG

%)



Supplementary Table 280¢¢ KS v dzFr NIISNJ n DS 2 YS (i N@stOesutSfor dete@niinidgiifzhd méxh afaachSaifEbe in &
IAPSYy Ot dzaGSNJ 61 & &A 3 gnithe néah of thdt @riabfe foF afl & MBsfafionso " I'ndnp v (G K

Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster

9GT

Variable Dataset Clustered 1 5 4 5 9 10

Alkalinity Q4 Geomean Factors M/V

Total Organic Carbon Q4 Geomean Factors - M/V
Chloride Q4 Geomean Factors M/V
Chemical Oxygen Demand Q4 Geomean Factors M/V
Dissolved Oxygen Q4 Geomean Factors M/V
Hardness Q4 Geomean Factors M/V

Total Kjeldahl Nitrogen Q4 Geomean Factors M/V

Nitrate + Nitrite Q4 Geomean Factors

pH Q4 Geomean Factors M/V

Total Phosphorus Q4 Geomean Factors M/V

Total Suspended Solids Q4 Geomean Factors M/V

Specific Conactance Q4 Geomean Factors M/V

Sulfate Q4 Geomean Factors M/V
Temperature Q4 Geomean Factors M/V

Turbidity Q4 Geomean Factors M/V

Iron Q4 Geomean Factors M/V




Supplementary Table 281¢¢ KS | yydzt £ a S| yestfesults fdd dettzininiSgNEEBh€@medin of each variable in a given cluster was

significantly diff NSy G o0h 'ndnp 0 { Kariable forlBof theStatigns 2 ¥ G K+ G @

Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |

LST

Variable Dataset Clustered 1 5 3 4 5 6 7 8 9 10
Alkalinity Annual Mean SOM
Total Organi€arbon Annual Mean SOM
Chloride Annual Mean SOM
Chemical Oxygen Demand Annual Mean SOM
Dissolved Oxygen Annual Mean SOM
Hardness Annual Mean SOM
Total Kjeldahl Nitrogen Annual Mean SOM
Nitrate + Nitrite Annual Mean SOM
pH Annual Mean SOM
Total Phosphorus Annual Mean SOM
Total Suspended Solids Annual Mean SOM
Specific Conductance Annual Mean SOM
Sulfate Annual Mean SOM
Temperature Annual Mean SOM
Turbidty Annual Mean SOM

Iron Annual Mean SOM
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Supplementary Table 22¢ ¢ K S

| VY dzh

a S R A tesf regults dor deteratsing 8§ t@&ngeandof each variable in a given cluster

Total Orgaic Carbon
Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids

Specific Conductance
Sulfate

Temperature
Turbidity

Iron

Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual Median SOM
Annual MediarSOM

gl a aArA3IYyATAOI Yyt e emedndSHdiayable formlloftigestptions i Ky K
Variabl Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |
ariable ataset Clustere 1 5 3 4 5 6 7 8 9 10
Alkalinity Annual Median SOM M/V
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Supplementary Table 283¢¢ KS | yydzl £ ¢ NR YY SR -teat &buyfs fdr detrmidihgdiéhé rBeldiofeach variable in a given
AAIYATAOI Yt e RAamaDSOMBIofithestatibns dnpo G(KFy GKS YSIy 27

Of dzaGSNJ ¢t &

Variable

Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster '

Dataset Clustered 1 2 3 4 5 6 7 8 9 10

Alkalinity

Total Organic Carbon
Chloride

Chemical Oxygen Demand
Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Annual Trimmed Mean SOM ' M/V MV M/IV
AnnualTrimmed Mean SOM MV

Annual Trimmed Mean SOM_ M/V M/V MV
Annual Trimmed Mean SOM- M/V M/V _ MV

Annual Trimmed Mean SOM ' M/V MV M/V MV

MV M/V

Annual Trimmed Mean SOM  M/V M/IV
Annual Trimmed Mean SOM- M/V M/V
Annual Trimmed Mean SOM M/ M/IV

Annual Trimmed Mean SOM  M/V M/V M/V
Annual Trimmed Mean SOM- M/V
Annual Trimmed Mean SOM = M/V
Annual Trimmed Mean SOM
Annual Trimmed Mean SOM
Annual Trimmed Mean SOM
Annual Trimmed Mean SOM
Annual Trimmed Mean SOM

i KI
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Supplementary Table 84¢ ¢ K S

| VY dzh

DS 2 Y S i NA-©st rasdlits §6r detérmaining i theamiess Niled2h vériable in a given

cluster was significantly diffe8y & 0 h ' ndnp 0 ( K lanAblelifdt &8l ofYh8 stafiong ¥ G K i &
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster
1 2 3 4 5 6 7 8 9 10

Alkalinity Annual Geomean SOM MV M/V

Total Organic Carbon Annual Geomean SOM M/V M/

Chloride Annual Geomean SOM _ M/V

Chemical Oxygen Demand Annual Geomean SOM M/V MV MV

Dissolved Oxygen Annual Geomean SOM M/V M/V - M/V

Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus
Total Suspended Solids
Specific Concditance
Sulfate

Temperature

Turbidity

Iron

Annual Geomean SOM
Annual Geomean SOM
Annual Geomean SOM
Annual Geomean SOM
Annual Geomean SOM
Annual Geomean SOM
Annual Geomean SOM
Annual Geomean SOM
Annual Geomean SOM
Annual Geomean SOM
Annual Geomean SOM

M/V

MV

M/V MV
M/V

MV

M/V MV

MV
M/V




Supplementary Table 85¢¢ KS v dzF NIi SNJ m a Sdstyesutshfa de@rmomaglif éndldean of each variable in a given cluster
gl a aArIyrTiol yithad thekmednolHdRayfable forallofitide stations

T9T

Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster '

Variable Dataset Clustered 1 5 3 4 5 6 7 8 9 10
Alkalinity Q1 Mean SOM M/V
Total Orgait Carbon Q1 Mean SOM M/V
Chloride Q1 Mean SOM M/V
Chemical Oxygen Demand Q1 Mean SOM
Dissolved Oxygen Q1 Mean SOM
Hadness Q1 Mean SOM
Total Kjeldahl Nitrogen Q1 Mean SOM
Nitrate + Nitrite Q1 Mean SOM
pH Q1 Mean SOM
Total Phophorus Q1 Mean SOM
Total Suspended Solids Q1 Mean SOM
Specific Conductance Q1 Mean SOM
Sulfate Q1 Mean SOM
Temperature Q1 Mean SOM
Turbidity Q1 Mean SOM

Iron Q1 Mean SOM
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Supplementary Table 86¢ ¢ K S

v dzl NJI SNJ ™

a S fedt Fesllts fohdaterririingzi theSriedn Qf each variable in a given cluster

gl a AAIAYATAOLIYyGf & RATTSNGayable formlofitiestptions G K1y GKS YSIy 2F GKIG O
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster '
1 2 3 4 5 6 7 8 9 10
Alkalinity Q1 Median SOM M/V

Total Organic Carbon
Chloride

Chemical Oxygen Demand
Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Q1 Median SOM
Q1 Median SOM
Q1 MedianSOM

Q1 Median SOM
Q1 Median SOM
Q1 Median SOM
Q1 Mdlian SOM
Q1 Median SOM
Q1 Median SOM
Q1 Median SOM
Q1Median SOM
Q1 Median SOM
Q1 Median SOM
Q1 Median SOM
Q1 Median SOM
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Supplementary Table 87¢¢ K S

v dzl NJI SNJ ™

¢ NR Y'Y Selt resufid fof defetmmingQf thdzaaarSoRgadh vatiable in a given
0KS YSIy 27

Of dZAGSNJ 61 a AAAYAFAOIyGfe RAFTFSNBylG otidsidnpo GKIY
. Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster '
Variable Dataset Clustered
1 2 3 7 8 9 10
Alkalinity Q1 Trimmed Mean SOM M/V M/V

Total Organic Carbon
Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

TotalPhosphorus
Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM
Q1 Trimmed Man SOM

Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM
Q1 Trimmed Mean SOM

i KI
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Supplementary Table 28¢ Thev dz NIi SNJ wm

DS 2 Y S { N Gest seultsyfor determinitd fif theinie&n\aEefch ¢ariable in a

IABSY Of dzaGSNI gl & AAIYATAOF yif aradiXoFai & M&sfationso h I‘n(anL') GKFYy G4KS YStIy
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |
1 2 3 5 6 7 8 9 10
Alkalinity Q1 Geomean SOM M/V M/V M/V

Total Organic Carbon
Chloride

Chemical Oxygen Demand
Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids
Specific Conductance
Sulfate

Temperatire

Turbidity

Iron

Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
Q1 Geomean SOM
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Supplementary Table 289¢ ¢ K S

v dzZ NI SNJ H

gl a AAIAYATFTAOLYy(Gf & RATTSNEBayable formlofitidesstptions i K1y G(KS YSIy 2F GKI G
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Clwter Cluster gluster Cluster
Alkalinity Q2 Mean SOM
Total Organic Carbon Q2 Mean SOM
Chloride Q2 Mean SOM
Chemical Oxygebemand Q2 Mean SOM
Dissolved Oxygen Q2 Mean SOM
Hardness Q2 Mean SOM
Total Kjeldahl Nitrogen Q2 Mean SOM
Nitrate + Nitrite Q2 Mean SOM
pH Q2 Mean SOM
Total Phosphorus Q2 Mean SOM
Total Suspended Solids Q2 Mean SOM
Specific Conductance Q2 Mean SOM
Sulfate Q2 Mean SOM
Temperature Q2 Mean SOM
Turbidity Q2 Mean SOM

Iron

Q2 Mean SOM

a Sdstyesuftshfan de@riniimg(if $iélde@n o€ each variable in a given cluster

%)



Supplementary Table 30¢¢ KS v dzF NIi SNJ 1 a SRt Feslltsffoh deter@inintzdf theSmeBNDf edch variable in a given cluster

was significant @ RAFTFSNByY G 6 h I n ompable for llofthe §té&tiGns YSIy 2F (GKF G @

Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |

99T

Variable Dataset Clustered 6 7 8 9 10
Alkalinity Q2 Median SOM
Total Organic Carbon Q2 Median SOM
Chloride Q2 Median SOM
Chemical Oxygen Demand Q2 Median SOM
Dissolved Oxygen Q2 MedianSOM
Hardness Q2 Median SOM
Total Kjeldahl Nitrogen Q2 Median SOM
Nitrate + Nitrite Q2 Median SOM
pH Q2 Median SOM
Total Phosphorus Q2 Median SOM
Total Suspended Solids Q2 Median SOM
Specific Conductance Q2 Median SOM
Sulfate Q2 Median SOM
Temperature Q2 Median SOM
Turbidity Q2 Median SOM

Iron Q2 Median SOM
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Supplementary Table B1¢¢ K S

v dzZ NI SNJ H

¢ NR Y'Y Selt resufid fof defetmmingQf thdzaaarSoRgadh vatiable in a given
0KS YSIy 27

Of dZAGSNJ g1 & aAIAYATFTAOLYyGf @ IV?)\a'lﬁaf)léfurﬁlyoﬁthe('sthtibm dnpv GKIY
. Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster '
Variade Dataset Clustered
1 2 6 7 8 9 10
Alkalinity Q2 Trimmed Mean SOM

Total Organic Carbon
Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus
Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM
Q2 Trimmed Mean SOM

i KI
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Supplementary Table 82 ¢ The Quarter 2 Geometria SI 'y { h a

QeistaesuftsSaddeermihing if the mean of each variable in a

iKS YSty

IABSY Of dzaGSNI gl & AAIYATAOF yif aradiXoFai & M&sfationso h I‘nCanL') 0Ky
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |
1 2 3 4 5 6 7 8 9 10
Alkalinity Q2 Geomean SOM

Total Organic Carbon

Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrgen

Nitrate + Nitrite
pH
Total Phosphorus

Total Suspended Solids
Specific Conductance

Sulfate
Temperature
Turbidity
Iron

Q2 Geomean SOM
Q2 Geomean SOM
Q2 Geomean SOM
Q2 Geomean SOM
Q2 Geomean SOM
Q2 Geomean SOM
Q2 Geomean SOM
Q2 Geomean SOM
Q2 Geomean SOM
Q2 Geomean SOM
Q2 Geomean SOM
Q2 Geomean SOM
Q2 Geomean@M

Q2 Geomean SOM
Q2 Geomean SOM

-

-
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Supplementary Table 33¢¢ K S

v dzZ NIl SNJ o

a Sdstyesuftshfa de€rmininy if tBeNdesn ofteach variable in a given cluster

gl a AAIAYATAOLYy(Gfe& RAFTFSNByYy( oralfofthestations i Ky G(KS YSIy 2F GKI G
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |
5 6 7 8 9
Alkalinity Q3 Mean SOM
Total Organic Carbon Q3 Mean SOM
Chloride Q3 Mean SOM
Chemical Oxygen Demand Q3 Mean SOM
Dissolved Oxygen Q3 Mean SOM
Hardness Q3 Mean SOM
Total Kjeldahl Nitrogen Q3 Mean SOM
Nitrate + Nitrite Q3 Mean SOM
pH Q3 Mean SOM
Total Phosphorus Q3 Mean SOM
Total Suspended Solids Q3 Mean SOM
Specific Conductance Q3 Mean SOM
Sulfate Q3 Mean SOM
Temperature Q3 Mean SOM
Turbidity Q3 Mean SOM

Iron

Q3 Mean SOM

@I NR | 0 f



Supplementary Table 34¢¢ KS v dzt NIl SNJ o a SRt resllts{foh determifingzétide $niidn Of eakch variable in a given cluster
gl &8 AAIYATAOLYGEte RAFTFSNBY( onibdfthestadns G KIy G(KS YSIYy 2F GKIG O NRI of

Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluser Cluster |

0.T

Variable Dataset Clustered 1 5 3 6 - 8 9 10
Alkalinity Q3 Median SOM
Total Organic Carbon Q3 Median SOM
Chloride Q3 Median SOM
Chemical Oxygen Demand Q3 Median SOM
Dissolved Oxygen Q3 Median SOM
Hardness Q3 Median SOM
Total Kjeldahl Nitrogen Q3 Median SOM
Nitrate + Nitrite Q3 Median SOM
pH Q3 Median SOM
Total Phosphorus Q3 Median SOM
Total Suspended Solids Q3 Median SOM
Specific Conductance Q3 Median SOM
Sulfate Q3 Median SOM
Temperature Q3 Median SOM
Turbidity Q3 Median SOM

Iron Q3 Median SOM
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Supplementary Table 35¢¢ K S

v dzZ NIl SNJ o

¢ NR Y'Y Selt resufid fof defetmmingQf thdzaaarSoRgadh vatiable in a given
0KS YSIy 27

Of dZAGSNJ g1 & aAIAYATFTAOLYyGf @ I?)\a'lﬁaﬁléfurﬁlyoﬁthecbsthtibm dnpv GKIY
Variabl Dataset Clustered Cluster Clwster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |
ariable ataset Clustere 1 5 3 4 5 6 7 8 9 10
Alkalinity Q3 Trimmed Mean SOM

Total Organic Carbon
Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus
Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Q3 Trimmed Mean SOM
Q3 Trimmed Mean SOM
Q3 Trimmed Mean SOM
Q3 Trimmed Mean SOM
Q3 Trimmed Mean SOM
Q3 Tnmmed Mean SOM
Q3 Trimmed Mean SOM
Q3 Trimmed Mean SOM
Q3 Trimmed Mean SOM
Q3 Trimmed Mean SOM
Q3 Trimmed Mean SOM
Q3 Trimmed Mean SOM
Q3 Trimmed Mean SOM
Q3Trimmed Mean SOM
Q3 Trimmed Mean SOM

0 KI
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Supplementary Table 36¢ ¢ K S
given cluster w a

v dzZ NIl SNJ o
AAIYATFAOL Yt

DS 2 Y S (i-t¢dt ©Osults B dgterriting if tief noimn Of 2aCE \@rialdle in a
& RA T T S NXBafidble tonall of thensmationsi K |y

0KS YSIy 27

Variable

Dataset Clustered

Cluster

Alkalinity

Total Organic Carbon

Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen

Nitrate + Nitrite
pH
Total Phosphorus

Total Suspended Solids
Specific Conductance

Sulfate
Temperature
Turbidity
Iron

Q3 Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM
Q3Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM
Q3 Geomean SOM

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

8

Cluster
9

Cluster '

10

0 KI

.CI
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Supplementary Table B7¢¢ K S

v dzZl NI SNJ n

gl a AAIAYATFTAOLYy(Gf & RATTSNEBayable formlofitidesstptions i K1y G(KS YSIy 2F GKI G
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |
1 2 6 7 8 9

Alkalinity Q4 Mean SOM
Total Organic Carbon Q4 Mean SOM
Chloride Q4 Mean S®I

Chemical Oxygen Demand Q4 Mean SOM
Dissolved Oxygen Q4 Mean SOM
Hardness Q4 Mean SOM
Total Kjeldahl Nitrogen Q4 Mean SOM
Nitrate + Nitrite Q4 Mean SOM
pH Q4 Mean SOM
Total Phosphorus Q4 Mean SOM
Total Suspended Solids Q4 Mean SOM
Specific Conductance Q4 Mean SOM
Sulfate Q4 Mean SOM
Temperature Q4 Mean SOM
Turbidity Q4 Mean SOM

Iron

Q4 Mean SM

a Sdstyesuftshfa de@dmomaglif §hbl#e@n of each variable in a given cluster

%)
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Supplementary Table 38¢¢ K S

v dzl NI SNJ n a SRt Fesllts{foh deter@ihirizi theSnmeBn®df edch variable in a given cluster

gl a AAIAYATAOLYy(Gfe& RATTSNGayable forullofthe statisns G K1y G(KS YSIy 2F GKIG O
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster '
1 2 3 4 5 6 7 8 9 10
Alkalinity Q4 Median SOM M/V MV

Total Organic Carbon
Chloride

Chemical Oxygen Demand
Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate + Nitrite

pH

Total Phosphorus

Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

WEEHN v

Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
Q4 Median SOM
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Supplementary Table 39¢ ¢ K S

v dzZl NI SNJ n

¢ NR Y'Y Seidt resufid fof defetmmingQf thdzaaarSoNgadh riable in a given
0KS YSIy 27

Of dZAGSNJ g1 & aAIAYATFTAOLYyGf @ IV?)\a'lﬁaﬁléfutﬁlyoﬁthe('stbtibm dnpv GKIY
. Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster '
Variable Dataset Clustered 7 8 9 10
Alkalinity Q4 Trimmed Mean SOM

Total Organic Carbon
Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen
Nitrate +Nitrite

pH

Total Phosphorus
Total Suspended Solids
Specific Conductance
Sulfate

Temperature

Turbidity

Iron

Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 Trimmed Mean SOM
Q4 TrimmedMean SOM

Q4 Trimmed Mean SOM

i KI
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Supplementary Table 80¢¢ K S

v dzZl NI SNJ n

DS 2 Y S (i-t¢dt ©Osults B dgterriting if tief noimn Of 2aCE \@rialdle in a
0KS YSIy 27

givenclda 6 SNJ g & AAIYATFTAOLyGf e I?A‘F"ﬁt‘ﬁahléquéllofc’th‘eétatimspo 0Ky
Variable Dataset Clustered Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster Cluster |
1 2 3 5 6 7 8 9 10
Alkalinity Q4 Geomean SOM - M/V MV

Total Organic Carbon

Chloride

Chemical Oxygen Demand

Dissolved Oxygen
Hardness

Total Kjeldahl Nitrogen

Nitrate + Nitrite
pH
Total Phosphorus

Total Suspended Solids

Specific Conductance

Sulfate
Temperature
Turbidity
Iron

Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM
Q4 Geomean SOM

(v [ISIGHN
CHIGH  HIGH

i KI



Cluster Consistency

Supplementary Table 611 Stations that Clustered Consistently among Different Statistical

Indicators in the Annual Datasets

Annual Factor Consistent Clusters

Annual SOM ConsistentClusters

BL-.7, EW239, FR17

BL-.7, EW239, FG26, FR17, FR64,
MC-35, SGR1, WR-319, WR348

BWC-4, SGR1

BL-64, CIG17, EG21, WLC2

EC-1, FGO.6, FG7

BWC-4, EW-168, MG18

EC-21, WR192, WR210

EC-7, FGO.6, FG7

EEL-1, EEL-38, EW79, MC-18

EEL-1, EEL-38, EW1, EW94

EW-1, EW-94 GC-8, VF-38
FC-26, FR64, MG35, WLG2 IN-2, LST-2, MU-20, SLT-12
IN-2, SLT-12 IWC-9, WR-248, WR293, WR309
IWC-9, WR-248 WR-134, WR162
WR-19, WR81 WR-19, WR46, WR81

WR-293, WR309

WR-192, WR210

15 STATIONS WERE VARIABLE

4 STATIONS WERE VARIABLE

Supplementary Table 621 Stations that Clustered Consistently among Diffegnt Statistical

Indicators in the Quarter 1 Datasets

Quarter 1 Factor Consistent Clusters

Quarter 1 SOM Consistent Clusters

BL-.7, SGR1, WR-248

BL-.7, EW239, FG26, FR17, FR64,
MC-35, SGR1, WR-348

BL-64, FG7

BWC-4, CIG17, EW168, MG18

CIC-17, MCG18

EC-1, EG7, FGO0.6

EEL-1, EEL-38, EW1, EW-79, EW
94, WR134, WR19, WR46, WR81

EEL-1, EEL-38, EW1

FC-0.6, IWG9, WR-248, WR279,

WR-293, WR309 EW-79, MU-20
GC-8, V38 GC-8, VF-38
IN-2, LST-2 IN-2, LST-2, SLT-12
MU-20, SLT-12 IWC-9, WLC-2, WR-279, WR293,

WR-309

WR-192, WR210

WR-162, WR192, WR210

WR-19, WR46, WR81

14 STATIONS WERE VARIABLE

8 STATIONS WERE VARIABLE
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Supplementary Table 631 Stations that Clustered Consistently among Different Statistical

Indicators in the Quarter 2 Datasets

Quarter 2 Factor Consistent Clusters| Quarter 2 SOM Consistent Clusters

BL-.7, BWG4, EW-239, FR17, FR
64, SGR1, WR-348

BL-64, EG21, IWCG9, WR-210, WR
248, WR279, WR293, WR309, WR
319

CIC-17, FG26
EC-1, EG7, FGO.6, FG7

EEL-1, EEL-38, EW1, EW-94

EW-168, MG18, SND4
GC-8, VF-38
IN-2, MU-20, SLT-12
WR-134, WR162, WR19, WR46,
WR-81

5 STATIONS WERE VARIABLE

BL-64, CIG17, EG21, FG26

BWC-4, EW-168, MG18, WR319

EC-1, EG7, FGO.6
EEL-38, EW-1, EW-94
EW-239, FR17, FR64, MCG35, WR
348
GC-8, VF-38
IN-2, LST-2, SLT-12
IWC-9, WR-248, WR279, WR-293,
WR-309
WR-134, WR162, WR19, WR46,
WR-81
WR-192, WR210
8 STATIONS WERE VARIABLE

Supplementary Table 641 Stations that Clustered Consistently among Different Statistical

Indicators in the Quarter 3 Datasets

Quarter 3 Factor Consistent Clusters| Quarter 3 SOM Consistent Clusters

BL-.7, BWG4, EW-168, EW239, FC
26, MCG18, WLG2

BL-64, EG21, IWG9, WR192, WR
210, WR248, WR279, WR293, WR
309

EC-1, EGY7, GGS8, VF-38, EEL-1, EW
1, EW79, EW94

FC-0.6, FG7
FR-17, FR64, SGR1

IN-2, LST-2, MU-20, SLT-12

WR-134, WR162, WR19, WR46,
WR-81

6 STATIONS WERE VARIABLE

BL-.7, BWG4, EW-168, EW239, FC

26, FR17, FR64, MG-18, MG35,
SGR1, WLC-2, WR-319, WR348

CIC-17, EG21, WR293

EC-7, FG7

EEL-1, EW-94

EW-79, GG8, IN-2, LST-2, MU-20,
SLT-12, SND4, VF-38

IWC-9, WR-279, WR309
WR-134, WR19, WR46, WR81

WR-192, WR210
7 STATIONS WERE VARIABLE
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Supplementary Table 651 Stations that Clustered Consistently among Different Sttistical

Indicators in the Quarter 4 Datasets

Quarter 4 Factor Consistent Clusters

Quarter 4 SOM Consistent Clusters

BL-.7, EW239, FG26, FR17, MC35,

BL-.7, BWG4, EW-168, EW239, FC
26, FR17, FR64, MCG-35, SGR1,

SGR1, WLC2 WR-319, WR348

EC-1, EC-7, FGO0.6, FG7 BL-64, WLG2

EC-21, IWG9, WR-248, WR279,
EC-21, IWCG9, WR-248, WR309 WR-293
EEL-1, EEL-38, EW1 EC-7, FGO0.6, FG7, GGS8, SND4,
VF-38
EW-79, EW94, MC-18 EEL-1, EEL-38, EW1
GC-8, VF-38 EW-79, EW94

IN-2, LST-2, MU-20, SLT-12

IN-2, LST-2, MU-20, SLT-12

WR-134, WR19, WR46, WR81

WR-134, WR162, WR192, WR210

WR-192, WR210

WR-19, WR46, WR81

WR-279, WR293

9 STATIONS WERE VARIABLE

4 STATIONS WERE VARIABLE

Supplementary Table 661 Stations that Clustered Consistently amog Different Quarters

and the Annual Dataset when the Mean was the Statistical Indicator

Mean Factor Consistent Clusters

Mean SOM Consistent Clusters

BL-.7, WR-348

BL-.7, EW239, FR17, FR64, MC-35,

WR-348
BWC-4, EW-239 BL-64, FG26
EC-1, EG7, VF-38,GC-8 BWC-4, EW-168, MG18
EEL-1, EEL-38, EW1 EC-7, FGO0.6

FR-17, SGR1 EEL-1, EEL-38, EW1
FR-64, MCG35 EW-79, GG8, MU-20, V38
IN-2, LST-2 IN-2, LST-2, SLT-12
IWC-9, WR-348, WR309 IWC-9, WR-248, WR293
MU-20, SLT-12 SGR1, WR-319

WR-134, WR19,WR-46, WR81

WR-19, WR46, WR81

WR-192, WR210

WR-192, WR210

16 STATIONS WERE VARIABLE

11 STATIONS WERE VARIABLE
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Supplementary Table 671 Stations that Clustered Consistently among Different Quarterly

and the Annual Datasets when the Median wase Statistical Indicator

Median Factor Consistent Clusters

Median SOM Consistent Clusters

BL-.7, EW239, SGR1, WLC-2

BL-.7, FG26, SGR1

BWC-4, FG26, FR17, FR64

BL-64, EG21

EC1, EGY

BWC-4, EW-168, EW239, FR17, FR
64, MG18, MG35, WR319, WR348

EC-21, IWG9, WR-248, WR293,

EC-7, FGO.6, FG7

WR-309
EEL-1, EW-1, EW-94 EW-79, EW-94
GGC8, VF-38 GGC8, VF-38
IN-2, LST-2 IN-2, LST-2, SLT-12
MU-20, SLT-12 IWC-9, WR-279, WR293, WR309
WR-134, WR\}\%Z%\;-VRlQ, WR46, WR-19, WR46, WRS1

WR-192, WR210

WR-192, WR210

13 STATIONS WERE VARIABLE

11 STATIONS WERE VARIABLE

Supplementary Table 681 Stations that Clustered Consistently among Different Quarterly
and the Annual Datasets when the Trimmed Mean was the Statistical Indicator

Trimmed M ean Factor Consistent
Clusters

Trimmed Mean SOM Consistent
Clusters

BL-.7, EW239, FR17

BL-.7, BWC.4, EW168, EW239, FC
26, FR17, FR64, MC-35, SGR1,
WR-319, WR348

EEL-1, EEL-38, EW79 CIC-17, EG21
EW-1, EW-94 EEL-38, EW-1, EW-94

IWC-9, WR-248 GGC8, VF-38
WR-19, WR81 IN-2, LST-2, SLT-12

IWC-9, WR-248, WR279, WR309

WR-19, WR46, WR81

WR-192, WR210

32 STATIONS WERE VARIABLE

14 STATIONS WERE VARIABLE
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Supplementary Table 691 Stations that Clustered Consistently among Different Quaerly
and the Annual Datasets when the Geometric Mean was the Statistical Indicator

Geometric Mean Factor Consistent
Clusters

Geometric Mean SOM Consistent
Clusters

BL-.7, BWG4, EW-239, FR17, FR
64, SGR1, WLC-2

BL-.7, EW239, FG26, FR17, FR64,
MC-35, SGR1, WR-348

BL-64, EG21, IWCG9, WR-192, WR
210, WR248, WR279, WR293, WR
309

BL-64, EG21

EC-1, FGO.6, FG7

BWC-4, EW-168, MG18

EEL-1, EEL-38, EW1, EW-79, EW-94 EC-7, FGO0.6
GGC8, VF-38 EEL-1, EW1, EW-94
IN-2, MU-20, SLT-12 EEL-38, EW-79
WR-134, WR19, WR46, WR81 GC8, VF-38

IN-2, LST-2, SLT-12

IWC-9, WR-279, WR293, WR309

WR-19, WR46, WR81

WR-192, WR210

11 STATIONS ARE VARIABLE

10 STATIONS ARE VARIABLE

Supplementary Table 6107 Stations that Clustered Consistently for the=actor Based

Cluster Assignments and the SOM Based Cluster Assignments

Overall Factor Consistent Clusters

Overall SOM Consistent Clusters

IWC-9, WR-248 BWC-4, EW-168
WR-19, WR81 EW-239, FR17, FR64, MG-35, WR
248
GC-8, VF-38

IN-2, LST-2, SLT-12

WR-19, WR46, WR81

WR-192, WR210

40 STATIONS WERE VARIABLE

27 STATIONS WERE VARIABLE
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LDA Classification Equations

Supplementary Table 7171 Classification coefficients and constant for the annual mean
LDA classification equations

Constant -299.2 -241.5 -264.5 -414.9 -265.5 -252.7
Interior Plateau 120.3 152.3 1135 316.1 112.3 1115
Drainage Area -233.6 -174.7 -242.3 -342.4 -204.7 -154.9

Cultivated 380.8 3241 3004 3719 4327 3281
Crops

Shawnee Hills 34.7 -2.5 2.7 -61.6 69.3 21.8
Moderately

Well Drained 47.3 68.3 48.0 49.0 18.0 71.6
Soil

CAFO -8.7 4.2 2.2 -19.0 -30.9 3.2
Temperature 472.7 391.6 494.3 597.5 400.2 388.8
Forest to Urban 8.9 21.8 -61.0 -46.6 70.2 21.2
Water 1471 123.4 187.3 203.4 915 119.0
Agriculture to

Urban 122.9 119.7 163.4 159.9 87.9 117.5
Highland Rim 38.3 -5.3 38.9 42.8 5.2 8.8
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Supplementary Table 7271 Classification coefficients and constant for the annual median
LDA classification equations

Constant -586.9 -464.4 -601.5 -622.5 -655.2
Highland Rim 34.6 0.7 -38.6 823 0.4
NPDES 164.9 1054  150.1  189.8 1242
Cultivated Crops  889.1 7239 9288  887.1  846.7
Slope % 648.5 5102  677.6 6167 6252
Forest to Urban 264.7 85.0 298.7 245.5 221.0
Water 11035 158 1302  -87.8 775
Precipitation 1071 30.7 816  -886  -126
G?t;'acr‘:'t“re to 66.1 53.1 754  -66.9  -38.8
Grassland,

Pasture, 255.8 1701 2544 2516  220.1
Scrubland

Wetlands 2004 1478 2318 2106 2143
CAFO 12.9 17 112 123 8.7
ﬁg:‘ecsut't“re o 223.6 240.5 1949 2364 1952
SSLimestoneShl  -55.3 68.0 585 246  -61.1

Supplementary Table 7371 Classification coefficients and constant for the annual trimmed
mean LDA classification equations

Constant -23.6 -20.8 -21.8 -21.8 -17.3
Agriculture to Urban -1.7 26.1 -13.6 5.3 -3.3
Forest to Urban 38.3 7.9 47.0 35.8 34.1
Cultivated Crops 40.3 24.1 31.4 33.7 30.0
'\D"r‘;?r?égtg'é’”\’v el 10.5 3.9 253 107 15.1
Sum of Streams 4.3 8.6 -8.8 2.7 -1.0
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Supplementary Table 741 Classification coefficients and constant for the annual geometric
mean LDA classification equations

Constant -350.6 -245.8 -289.4 -281.3 -225.1
Highland

Rim 139.4 102.7 132.0 102.9 101.2
NPDES 29.0 4.2 -22.5 -27.5 -2.0
Precipitation 236.3 215.4 263.8 269.5 200.2
Urban 170.7 155.8 159.7 170.0 121.7
Agriculture

to Urban -160.9 -134.7 -129.0 -118.8 -101.4
Wetlands 150.2 141.7 160.2 163.1 121.2
Urban to

Agriculture -41.0 -35.7 -47.3 -48.9 -25.2
Sandstone,

Limestone,

Shale 284.3 224.8 230.6 219.3 223.3
Eastern

Corn Belt 391.6 335.6 344.4 345.0 327.9

Supplementary Table 751 Classification coefficients and constant for the quarter 1 mean
LDA classification equations

Constant -303.7 -593.8 -277.3 -569.4 -133.8
Forest 165.5 70.9 258.8 334.1 141.7
Interior Plateau 500.8 747.5 291.4 661.6 271.4
Longest Flow Path 149.9 110.9 -7.9 94.1 14.5

Temperature 59.0 633.6 110.9 253.7 40.3

Sandstone, Limestone

Shale : ' -219.9 -108.3 -51.4 -218.0 -88.3
NPDES 278.7 323.6 174.5 336.7 147.4
Poorly Drained Soil 201.4 157.4 204.0 254.3 149.9
Drainage Area -273.2 -514.7 -93.7 -350.7 -96.7

Urban to Agriculture -119.9 -171.3 -50.4 -160.5 -42.3
Gray Shale 165.0 43.5 129.8 182.1 102.9
Water 96.9 -40.6 75.4 84.2 69.9

ND 112.0 -206.4 108.0 40.3 82.5

Grassland, Pasture,

Scrubland -124.6 92.5 -154.1  -1205  -99.2
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Supplementary Table 75 (cont)i Classification coefficients and constant for the quarter 1
mean LDA classification equations

Constant -143.0 -242.7 -457.5 -213.1 -131.6
Forest 127.8 87.6 680.1 163.4 127.4
Interior Plateau 198.5 283.8 210.9 314.2 234.9
Longest Flow Path -68.0 -71.9 -73.1 -68.1 -61.1
Temperature 43.2 -24.8 -22.5 33.7 16.4
gf}‘gl‘fto“e' Limestone, 198 680  -109.0 -61.6  -60.8
NPDES 106.7 145.0 220.7 135.8 123.2
Poorly Drained Soil 158.5 189.0 250.8 207.8 151.2
Drainage Area -9.8 -19.1 -26.1 -17.9 -13.8
Urban to Agriculture 8.4 -46.4 -33.6 -18.9 -22.9
Gray Shale 101.8 216.0 139.8 126.8 113.3
Water 71.0 153.1 63.4 79.2 79.3
ND 123.2 188.7 121.8 132.9 1071

Grassland, Pasture,

Scrubland -141.8 -186.5 -219.5 -160.3 -114.3
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Supplementary Table 761 Classification coefficients and constant for the quarter 1 median
LDA classification equations

Constant -1117.0 -1217.0 -1079.0 -968.6 -1142.0
Forest 1705.0 1873.0 1655.0 1628.0 1829.0
Interior Plateau -306.0 -383.6 -257.3 -275.7 -356.1
Longest Flow Path  444.6 489.7 433.8 419.2 494.3
Water 307.1 293.2 314.8 297.2 268.2
Forest to Urban 419.6 445.9 440.5 386.3 4325

Network Density 717.1 777.4 677.6 627.6 831.3
Cultivated Crops 1628.0 1663.0 1601.0 1517.0 1598.0
Agriculture to

Forest -24.0 40.0 -14.6 -30.7 41.3
Shawnee Hills -113.4 -90.7 -131.3 -118.5 -114.3
ggﬁrly Drained 54.2 3.4 60.5 45.7 -24.3
CAFO -87.2 -70.1 -111.9 -86.3 -35.5
CSO 346.0 379.2 327.2 313.9 402.8
Temperature -732.5 -884.7 -682.5 -671.6 -915.3
Grassland,

Pasture, -252.2 -326.8 -246.4 -218.6 -353.7
Scrubland

Bluegrss -37.3 -2.8 -45.8 -47.4 -1.2
Gray Shale 372.7 409.7 3692 356.9 403.0
Highland Rim -26.9 0.6 -46.5 -27.6 -46.3
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Supplementary Table 76 (cont)i Classification coefficients and constant for the quarter 1
median LDA classification equations

Constant -12350 -818.3  -1302.0 -1118.0
Forest 2259.0 571.9 1776.0 1671.0
Interior Plateau -426.3 475.5 -53.4 -327.8
Longest Flow Path 553.4 83.4 351.4 381.2
Water 232.7 209.3 334.6 294.4
Forest to Urban 404.8 258.6 497.7 503.5
Network Density 905.8 -24.4 507.7 6692
Cultivated Crops 1535.0 1131.0 1739.0 1676.0
Agriculture to 1560 950  -1434  -12.6
Shawnee Hills -199.0 -201.7 -221.8 -60.7
Poorly Drained Soil -63.9 198.4 164.6 58.5
CAFO 14.2 -235.6 -219.3 -146.6
CSO 431.0 76.1 264.9 304.2
Temperature -1300.0 583.3 -362.0 -696.8
Grassland, Pasture

Scrubland’ ' -467.3 205.7 -131.0 -266.4
Bluegrass 51.2 -317.5 -151.9 0.8
Gray Shale 434.5 183.7 365.5 368.6
Highland Rim -27.8 -115.1 -71.1 -21.1
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Supplementary Table 771 Classification coefficients andconstant for the quarter 1
trimmed mean LDA classification equations

Constant -1060.0 -1009.0 -1118.0 -1141.0
Temperature 523.6 395.0 574.0 922.2
Interior Plateau -226.7 -210.0 -18.8 226.9
Cultivated Crops 800.1 753.2 702.4 589.6
Shawnee Hills 125.9 54.3 -4.2 76.5
Forest 1654.0 1776.0 1691.0 1067.0
Forest to Urban 117.5 101.4 1154 0.6
ﬁg:‘ecsli't“re to 717 837  -136.7 58.5
Central Till Plain 1294.0 1246.0 1268.0 1276.0
Gray Shale 98.0 125.7 1365 107.0
g&?ﬁg‘gé?’ve" 1383 -132.2 -97.3 -113.3
NPDES 152.5 173.3 216.1 243.8
Drainage Area -266.8 -249.9 -345.5 -474.7

Supplementary Table 77 (cont.)i Classification coefficients and constant for the quarter 1
trimmed mean LDA classification equations

Constant -945.1 -948.6 -1004.0 -915.0
Temperature 456.9 470.6 437.4 495.0
Interior Plateau -231.6 -154.7 -244.2 -183.7
Cultivated Crops 724.9 696.6 769.4 742.2
Shawnee Hills 75.3 48.6 93.6 112.9
Forest 1658.0 1620.0 1717.0 1504.0
Forest to Urban 112.0 102.0 111.8 119.9
ég:::s“t't“re o 1026 970 863  -73.0

Central Till Plain 1257.0 1232.0 1283.0 1141.0
Gray Shale 89.1 113.4 96.5 108.0
Moderatel

Drained S)(;i?Ne" 1220 -116.6  -141.5 -105.2
NPDES 152.7 196.0 149.9 144.7

Drainage Area -236.8 -274.6 -239.3 -235.6
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Supplementary Table 781 Classification coefficients and constant for the quarter 1
geometric mean LDA classification equations

Constant -686.0 -127.7 -890.8 -845.1 -828.4

Interior 1052.0  1109.0  1303.0  1168.0  1176.0
Plateau

Drainage

Aron -188.7 -243.0 2934 2754 267.2
Wetlands 279.5 265.3 346.8 325.8 320.8
Forest 270.0 247.8 368.4 343.3 204.5
ané""”@ 142.1 161.2 385 124.7 137.7
Grassland,

Pasture, 91.4 85.1 130.1 110.1 106.9
Scrubland

Eastern 1198.0 12850  1279.0  1336.0  1338.0
Corn Belt

NPDES 54.5 77.9 81.3 87.1 87.6

Supplementary Table 791 Classification coefficients and constant forlie quarter 2 mean
LDA classification equations

Constant -593.5 -492.5 -616.0 -426.4 -516.1
Cultivated Crops 931.2 827.0 980.7 773.0 832.2
Interior Plateau 772.3 659.8 811.6 651.5 769.2
Sandstone,

Limestone. Shale -260.9 -187.3 -265.2 -219.9 -252.3
Wetlands 35.6 42 .5 6.4 13.9 40.3
Highland Rim -254.7 -193.4 -266.7 -214.7 -217.6
Agriculture to 22.5 38 22.3 64.3 5.3
Urban

NPDES 230.8 207.2 238.0 180.1 199.7
Forest to 2915  261.3 307.1 256.4 270.4
Agriculture

Grassland,

Pasture, 252.9 222.7 241.3 209.8 230.4
Scrubland

Limestone 126.2 102.1 113.8 113.1 104.1
Forest to Urban 136.6 129.1 134.4 100.5 127.8
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Supplementary Table 7107 Classification coefficients and constant for the quarter 2
median LDA classification equations

Constant 1722  -157.4  -171.7  -1768  -127.7
Interior Plateau 316.3 230.3 286.6 227.6 213.6
Longest Flow Path 117.8 76.6 127.8 122.2 93.2
Cultivated Crops 155.4 204.8 178.1 172.6 154.0
'\D"%‘?ﬁéztes'gi?’ve" 108.7 80.0 132.7 109.2 76.1
gﬁgl‘ftone' Limestone, 1578 926 1701 -98.0 -115.0
Highland Rim -102.3 -99.3 -133.3 -86.9 -100.6
ggfj;l'ggg Pasture, 117.7 68.2 126.6 103.1 82.7
Network Density 9.7 49.4 11.3 225 57.7
Forest to Urban 67.6 88.6 71.9 72.1 32.7
Water 8.0 19.3 6.5 -8.0 7.6
Agriculture to Urban 18.2 38.2 33.2 24.8 57.1
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Supplementary Table 7.11 Classification coefficients and constant for the quarter 2
trimmed mean LDA classification equations

Constant -5260.0 -4027.0 -4429.0 -2646.0
Forest 9152.0 8130.0 8356.0 6241.0
Drainage Area 6374.0 5205.0 5746.0 3868.0
Interior Plateau -1496.0 -1185.0 -1334.0 -553.7
Shawnee Hills -211.6 -350.7 -215.8 -357.2
Wetlands 2766.0 2359.0 2522.0 1842.0
Longest Flow Path -4517.0 -3792.0 -4089.0 -2896.0
NPDES 368.8 441.9 432.4 298.9
Urban 1553.0 1206.0 1365.0 961.6
Highland Rim -1124.0 -866.3 -964.4  -670.0
CAFOs 3762.0 3216.0 3438.0 23630
Central Till Plain 5238.0 4484.0 4770.0 3478.0
CSOs 1218.0 945.7  1069.0 768.6
Agriculture to Forest 712.6 741.2 720.7 439.8
Precipitation -3078.0 -2617.0 -2805.0 -1764.0
Urban to Forest -819.5 -685.7 -764.2 -570.4
Gray Shale -249.7  -262.1  -238.5 -82.3
Poorly Drained Saoll -870.4  -681.2 -771.0 -443.4

189



Supplementary Table 7.11(cont.) Classification coefficients and constant
for the quarter 2 trimmed mean LDA classification equations

Constant -52010 -3619.0 -3318.0
Forest 8982.0 7569.0 7279.0
Drainage Area 6389.0 5185.0 4846.0
Interior Plateau -1432.0 -1176.0 -1081.0
Shawnee Hills -171.3  -195.3  -232.6
Wetlands 2752.0 2252.0 2160.0
Longest Flow Path -4560.0 -3682.0 -3474.0
NPDES 272.5 299.5 327.8
Urban 1636.0 1277.0 1177.0
Highland Rim -1153.0 -921.2  -816.3
CAFOs 3639.0 3053.0 2932.0
Central Till Plain 5172.0 4373.0 4126.0
CSOs 1237.0 987.4 925.2
Agriculture to Forest 568.0 560.9 578.4
Precipitation -2892.0 -2443.0 -2343.0
Urban to Forest -810.5 -675.3 -650.6
Gray Shale -185.8 -187.8 -186.0
Poorly Drained Soil -818.4 -677.3 -641.4
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Supplementary Table 7.12" Classification coefficients and constant for the
qguarter 2 geometric mean LDA classification equations

Constant -646.8 -555.8 -587.2  -1166.0
Forest 1036.0 1272.0 1433.0 2803.0
NPDES -114.7 4.1 22.8 150.8
Highland Rim -103.9 -1849  -147.3  -219.0
Urban 306.1 30.2 -34.3 -257.0
Central Till Plain 957.3 1044.0 10480 1393.0
Forest to Urban -228.9 28.6 91.6 197.1
Water 180.2 -56.0 -143.4  -344.5
Limestone -128.2 -22.8 -4.8 -9.5
Network Density 152.2 149.7 217.3 245.4
Sum of Streams -59.5 52.9 71.7 146.5
Grassland -206.8 -177.4 -238.8 -397.5
Agriculture to Forest -93.5 33.7 142.4 481.2
Temperature 647.3 322.3 210.0 -354.1
Shawnee Hills -169.6 -240.8 -305.1 -700.8
CSOs 80.0 42.0 0.7 -88.2

Supplementary Table 7.12 (cont.) Classification coefficients and constant
for the quarter 2 geometric mean LDAclassification equations

Constant -567.3 -914.7 -611.1
Forest 1311.0 2307.0 1409.0
NPDES 81.4 71.0 13.0
Highland Rim -126.5 -186.2 -220.5
Urban -30.6 -133.8 -73.3
Central Till Plain 1003.0 1302.0 1130.0
Forest toUrban 53.9 128.9 171.3
Water -102.5 -217.2 -185.4
Limestone -6.8 -36.0 15.9
Network Density 192.4 207.7 202.3
Sum of Streams 53.3 97.0 93.6
Grassland -219.0 -320.9 -209.7
Agriculture to Forest 153.1 258.0 107.0
Temperature 222.1 -36.0 215.2
ShawneeHills -270.3 -535.3 -275.8
CSOs -0.4 -39.5 6.2
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Supplementary Table 7.13 Classification coefficients and constant for the
quarter 3 mean LDA classification equations

Constant -259.1  -254.1 -211.1  -269.1
Drainage Area 195.3 198.3 -47.5 192.1
Temperature 132.5 123.8 401.2 142.2
Urban -105.7 -77.8 12.8 -117.6
Agriculture to Forest 124.6 142.8 145 125.2
Forest to Urban 92.9 64.6 8.3 94.8

Water -74.3 -59.6 24.2 -78.7
Moderately Well Drained Soil 83.6 81.5 48.7 76.9

Central Till Plain 496.1 470.5 325.6 521.3
Limestone 42.6 39.1 10.8 40.3

Supplementary Table 7.13 (cont.) Classification coefficients and constant
for the quarter 3 mean LDA classification equations

Constant -199.7 -319.0 -248.7
Drainage Area 66.2 310.4 183.2
Temperature 247.7 42.2 171.5
Urban 3.1 -97.8 -73.6
Agriculture to Forest 106.7 189.1 118.9
Forest to Urban -11.0 77.9 61.7

Water 7.6 -78.4 -45.1
Moderately Well Drained Soil 51.5 117.6 94.3

Central Till Plain 355.4 479.9 4355
Limestone 14.9 324 25.3
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Supplementary Table 7.14 Classification coefficients ad constant for the quarter 3
median LDA classification equations

Constant -147.8 -159.6 -149.8 -113.3 -157.3
Temperature 105.3 124.7 115.8 118.3 216.7
Longest Flow Path -131.7  -170.3 -97.8 -136.7  -210.3
CSOs 88.3 98.1 102.4 52.5 91.2

NPDES 71.3 84.3 60.4 77.0 106.4
Agriculture to Forest 135.9 139.1 122.9 119.2 86.0

Sum of Streams 144.9 175.0 138.2 106.1 159.1
Cultivated Cropland 228.5 251.4 217.1 197.3 216.2
Poorly Drained Soil -76.0 -94.4 -85.1 -54.7 -94.6
Wetlands 12.9 -7.1 6.2 21.1 -0.6

Supplementary Table 7.15 Classification coefficients and constant for the quarter 3
trimmed mean LDA classification equations

Constant -396.9 -471.0 -420.2 -377.4 -382.9
Temperature 438.6 565.7 430.4 598.7 446.4
Urban -63.6 -2.3 -82.0 29.3 -35.1
Bluegrass 58.9 67.6 82.2 32.9 63.7
Central Till Plain 630.1 597.8 702.9 522.1 630.2
Agriculture to Forest 199.2 204.4 212.8 124.7 196.3
Forest to Urban -173.8 -267.7 -154.6 -193.1 -181.1
Water 122.9 197.7 101.4 157.7 126.8
Network Density 255.4 264.1 275.8 216.5 235.6
Agriculture to Urban 185.3 256.8 186.1 179.0 173.0
Grassland -128.1  -153.0 -1451  -123.2 -124.4
Longest Flow Path 25.9 -94.1 -1.9 -96.8 -14.8
Poorly Drained Soll 375 72.9 20.2 59.6 49.4

193



Supplementary Table 7.16 Classification coefficients and constant for the quarter 3
geometric mean LDA classification equations

Constant -2674.0 -3141.0 -2921.0 -3076.0 -2806.0
Interior Plateau 4774.0 5510.0 5227.0 5338.0 5150.0
Longest Flow Path -214.6  -239.7 -2309 -303.4 -262.6
Shawnee Hills -413.2 -652.0 -638.8 -516.1 -567.4
Cultivated Cropland 1203.0 1228.0 1203.0 1296.0 1177.0
Highland Rim -976.0 -1182.0 -1097.0 -1111.0 -1091.0
Moderately Well Drained 1057.0 1201.0 1161.0 1110.0 1093.0
Grassland 228.0 255.8 296.5 179.8 208.8
Temperature -63.8 -343.6 85.3 -340.9 -289.2
Forest to Urban 657.7 697.3 691.2 699.1 617.7
Bluegrass 120.3 207.0 54.8 229.8 207.1
Network Density 77.6 123.0 27.4 159.1 157.8
CAFOs 364.9 458.4 355.3 434.3 417.2
Eastern Corn Belt 3138.0 3408.0 3262.0 3356.0 3222.0
Forest to Agriculture 676.7 801.2 680.5 813.2 756.7
Agriculture to Urban 665.9 794.4 652.4 8040 783.3
Water -94.4 -133.3 -81.5 -147.5 -107.7
Limestone 83.4 131.5 52.1 129.4 114.7

Supplementary Table 7.17 Classification coefficients and constant for the quarter 4 mean
LDA classification equations

Constant -210.5 -163.0 -221.4 -246.3 -217.1
Shawnee Hills -161.0 -73.3 -151.4 -147.7 -162.1
Interior Plateau 3.3 -47.9 2.2 -46.9 1.8
Central Till Plain 4545 3514 433.9 464.1 445.2
Urban 33.6 49.5 554 90.9 49.2
Forest to Urban -74.5 -73.5 -97.7 -120.5 -86.5
Forest 545.5 471.4 566.7 633.2 554.5
Moderately Well Drained Soil -57.6 -39.1 -60.3 -77.6 -54.2
Highland Rim 74.5 72.5 99.6 94.5 74.1
NPDES 2.3 -14 -9.9 -8.6 12.8
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Supplementary Table 7.18 Classification coefficients and constantor the quarter 4
median LDA classification equations

Constant -136.8 -129.5 -324.9 -91.5
NPDES 183.1 230.2 436.2 197.0
Highland Rim 37.5 34.6 105.5 18.6
Interior Plateau 212.8 -6.4 -141.8 16.9
Shawnee Hils -18.3 96.7 203.9 68.1
Cultivated Cropland 87.1 160.4 204.4 124.8
Wetlands -32.8 -70.8 -91.8 -51.9
Agriculture to Urban -70.4 -64.6 -161.8 -59.8
Impervious Surface 70.8 99.7 169.3 89.8
Drainage Area 10.3 66.3 122.6 57.1

Supplementary Table 7.18 (ont.) 1 Classification coefficients and constant for the quarter 4
median LDA classification equations

Constant -156.5 -302.8 -123.7
NPDES 231.3 462.3 2315
Highland Rim 92.3 35.3 28.6
Interior Plateau -49.2 -10.7 21
Shawnee Hills 124.5 121.4 83.7
Cultivated Cropland 154.6 194.6 147.5
Wetlands -54.7 -98.1 -50.3
Agriculture to Urban -84.6 -166.3 -88.1
Impervious Surface 97.4 186.3 112.2
Drainage Area 79.1 88.9 66.0
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Supplementary Table 7.19 Classification aefficients and constant for the quarter 4
trimmed mean LDA classification equations

Constant -106.8 -91.5 -109.6 -104.3 -55.2 -142.6
Interior Plateau 30.1 27.1 321 233.0 37.3 -35.9
Drainage Area 37.1 36.5 46.5 -20.1 25.1 77.6
Shawnee Hills 67.7 58.4 73.9 -38.1 38.0 1155
Cultivated Cropland 203.0 173.1 199.8 119.1 126.3 204.8
NPDES 29.4 39.0 26.7 9.8 25.8 61.6
Urban to Forest -36.4 -26.8 -41.3 -26.5 -17.4 -45.4
Forest to Urban 83.6 6438 80.9 50.1 44.1 79.9
Water -13.8 -1.0 -10.9 -1.7 6.8 -9.2

Supplementary Table 7.20° Classification coefficients and constant for the quarter 4
geometric mean LDA classification equations

Constant -63.1 -80.8 -78.7 -192.2
Forest 111.9 111.4 108.9 268.3
Drainage Area 41.3 47.0 55.2 -45.7
Interior Plateau 212.3 145.3 226.9 434.4
Shawnee Hills -153.7 -105.6 -165.9 -291.6
Highland Rim -69.0 0.2 -76.3 -69.7
NPDES -12.9 -8.9 -5.6 -4.7
Moderately Well Drained 84.0 76.1 98.1 90.5
Urban 63.9 39.4 66.9 53.4
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Supplementary Table 7.20 (cont.) Classification coefficients and constant for the quarter 4
geometric mean LDA classification equations

Constant -47.3 -130.6 -105.7
Forest 91.7 279.5 79.7
Drainage Area 34.0 -17.7 85.6
Interior Plateau 172.6 243.5 71.7
Shawnee Hills -118.7 -224.0 -55.6
Highland Rim -41.1 -78.6 4.9
NPDES -3.8 16.2 18.1
Moderately Well Drained 66.9 83.7 81.6
Urban 44.0 495 38.2
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LDA and SVM Quster Prediction for the ECWMP Sites

Supplementary Table 811 Cluster prediction and posterior probability error rate

estimates for the Annual LDA model so
ANNUAL ﬁggﬂ?&;‘c Mean (5) Median (5) Hg;g‘(eg;
Station name | Cluster | Est. | Cluster | Est. Cluster | Est. | Cluster | Est.
ECWMP-01 2 0.386 5 0.985 3 1 4 0.618
ECWMP-02 5 1 3 0.999 5 0.62 2 0.887
ECWMP-03 5 0.957 2 0.793 1 1 4 0.562
ECWMP-04 5 0.995 3 1 2 1 2 0.991
ECWMP-05 5 1 1 0.999 1 1 4 0.65
ECWMP-06 5 0.969 5 0.999 3 0.67 4 0.327
ECWMP-07 5 0.973 5 1 3 1 1 0.431
ECWMP-08 2 0.695 1 0.975 1 1 1 0.379
ECWMP-09 5 0.998 5 1 3 1 1 0.493
ECWMP-10 5 0.998 5 1 3 1 1 0.386
ECWMP-11 5 0.995 5 1 3 1 1 0.438

Supplementary Table 821 Cluster prediction and posterior probability error rate

estimates for the Quarter 1 LDA model sb
QUARTER 1 ﬁigﬁ‘gg'c Mean (10) Median (9) I/Ir('e”a"rr]”(e;;
Station name | Cluster | Est. | Cluster | Est. | Cluster | Est. | Cluster | Est.
ECWMP-01 5 0.998 6 0.999 9 1 1 0.999
ECWMP-02 5 0.974 6 1 4 1 7 0.748
ECWMP-03 5 0.998 2 0.583 4 1 7 0.418
ECWMP-04 5 0.901 2 0.607 4 1 2 0.496
ECWMP-05 2 0.556 6 1 4 1 1 0.968
ECWMP-06 5 0.999 6 1 4 1 1 1
ECWMP-07 2 1 8 1 9 0.98 1 1
ECWMP-08 5 0.699 6 1 5 0.97 1 0.998
ECWMP-09 2 1 8 1 9 1 1 1
ECWMP-10 2 1 1 0.971 9 1 1 1
ECWMP-11 2 1 1 0.992 9 1 1 1

198

cl assi fic

cl assi



Supplementary Table 831 Cluster prediction and posterior probability error rate

estimates for the Quarter 2 LDA model sb
QUARTER 2 SAZZ;”?;;'C Mean (5) Median (5) I/I”e“;rr:‘(eg
Station name | Cluster | Est. | Cluster | Est. | Cluster | Est. | Cluster | Est.
ECWMP-01 2 1 3 0.721 2 1 4 1
ECWMP-02 2 1 4 0.999 5 0.99 7 0.999
ECWMP-03 2 1 3 0.535 3 0.41 1 1
ECWMP-04 2 1 3 0.978 5 1 3 0.997
ECWMP-05 2 1 3 1 3 1 7 1
ECWMP-06 2 0.959 3 0.996 2 1 7 1
ECWMP-07 3 0.588 3 1 2 1 4 1
ECWMP-08 2 1 3 1 2 1 3 1
ECWMP-09 7 0.6 3 1 2 1 4 1
ECWMP-10 7 0.548 3 1 2 1 4 1
ECWMP-11 2 0.999 3 1 2 1 4 1

Supplementary Table 841 Cluster prediction and posterior probability error rate

estimates for the Quarter 3 LDA model sbo
QUARTER 3 | Geometric Mean (7) Median (5) Trimmed

Mean (5) Mean (5)
Station name | Cluster | Est. | Cluster | Est. | Cluster | Est. | Cluster | Est.
ECWMP-01 1 053 5 1 4 1 3 0.524
ECWMP-02 5 1 5 1 4 1 5 0.984
ECWMP-03 2 0.995 2 0.642 4 0.79 3 0.506
ECWMP-04 5 1 5 0.999 2 0.65 5 0.993
ECWMP-05 2 1 4 0.926 4 0.64 5 0.837
ECWMP-06 4 1 4 0.886 4 0.89 3 0.971
ECWMP-07 4 1 4 0.953 2 0.82 3 1
ECWMP-08 4 1 4 0.841 4 0.86 3 0.994
ECWMP-09 4 1 4 0.97 2 1 3 1
ECWMP-10 4 1 4 0.975 2 0.96 3 1
ECWMP-11 4 0.986 4 0.976 2 0.93 3 1
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Supplementary Table 851 Cluster prediction and posterior probability error rate

estimates for the Quart eftheECWNMPAsitesnodel s 6
QUARTER 4 | Geometric Mean (5) Median (7) Trimmed

Mean (7) Mean (6)
Station name | Cluster | Est. | Cluster | Est. | Cluster | Est. | Cluster | Est.
ECWMP-01 5 0.994 1 0.977 4 0.96 1 0.959
ECWMP-02 5 0.618 4 0.957 4 1 5 0.97
ECWMP-03 5 0.833 1 0.654 2 0.47 2 0.697
ECWMP-04 5 0.924 4 0.961 4 0.59 5 0.828
ECWMP-05 5 0.999 1 0.813 2 1 2 0.819
ECWMP-06 5 0.997 1 0.986 4 0.76 1 0.871
ECWMP-07 5 0.997 1 0.989 2 0.94 1 0.99
ECWMP-08 5 0.995 1 0.983 4 0.47 1 0.973
ECWMP-09 5 0.999 1 0.994 2 1 1 0.993
ECWMP-10 5 0.999 1 0.994 2 1 1 0.994
ECWMP-11 5 1 1 0.996 2 0.99 1 0.993

Supplementary Table 861 Cluster prediction and probability estimates for the Annual

SVM model s6 classification of the ECWMP
ANNUAL Geometric Mean (3) Median (7) Trimm ed
Mean(8) Mean (6)
Station name | Cluster | Est. | Cluster | Est. | Cluster | Est. | Cluster | Est.
ECWMP-01 5 0.431 1 0.882 2 0.436 4 0.451
ECWMP-02 5 0.383 1 0.918 4 0.392 6 0.402
ECWMP-03 4 0.496 1 0.934 4 0.535 6 0.556
ECWMP-04 4 0.473 1 0.929 4 0.506 6 0.529
ECWMP-05 5 0.438 1 0.907 2 0.445 4 0.456
ECWMP-06 5 0.565 1 0.928 2 0.572 4 0.589
ECWMP-07 5 0.659 1 0.871 2 0.666 4 0.692
ECWMP-08 4 0.437 1 0.921 4 0.464 6 0.48
ECWMP-09 5 0.673 1 0.85 2 0.679 4 0.706
ECWMP-10 5 0.687 1 0.836 2 0.693 4 0.718
ECWMP-11 5 0.6% 1 0.844 2 0.662 4 0.688
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Supplementary Table 871 Cluster prediction and probability estimates for the Quarter 1

SVM model s6 classification of the ECWMP
QUARTER 1 | Geometric Mean (7) Median (6) Trimmed

Mean (9) Mean (6)
Station name | Cluster | Est. | Cluster | Est. | Cluster | Est. | Cluster | Est.
ECWMP-01 1 0.449 7 0.498 3 0.45 5 0.704
ECWMP-02 1 0.358 7 0.478 2 0.501 5 0.658
ECWMP-03 7 0.41 7 0.57 2 0.596 5 0.782
ECWMP-04 1 0.379 7 0.635 2 0.549 5 0.822
ECWMP-05 1 0.551 7 0.724 3 0.495 5 0.844
ECWMP -06 1 0.651 7 0.728 3 0.669 5 0.852
ECWMP-07 1 0.671 7 0.662 3 0.769 5 0.83
ECWMP-08 1 0.52 7 0.68 3 0.486 5 0.841
ECWMP-09 1 0.692 7 0.684 3 0.811 5 0.826
ECWMP-10 1 0.698 7 0.655 3 0.823 5 0.83
ECWMP-11 1 0.688 7 0.692 3 0.808 5 0.812

Supplementary Table 881 Cluster prediction and probability estimates for the Quarter 2

SVM model s6 classification of the ECWMP
QUARTER 2 | Geomeric Mean (9) Median (8) Trimmed

Mean (9) Mean (6)
Station name | Cluster | Est. | Cluster | Est. | Cluster | Est. | Cluster | Est.
ECWMP-01 3 0.422 6 0.31 4 0.633 2 0.545
ECWMP-02 3 0.375 6 0.298 4 0.683 2 0.499
ECWMP-03 3 0.474 6 0.414 4 0.699 2 0.801
ECWMP-04 3 0.491 6 0.427 4 0.642 2 0.781
ECWMP-05 3 0.479 6 0.508 4 0.753 2 0.721
ECWMP-06 3 0.465 6 0.448 4 0.801 2 0.742
ECWMP-07 3 0.463 5 0.326 4 0.523 2 0.628
ECWMP-08 3 0.498 6 0.422 4 0.566 2 0.746
ECWMP-09 3 0.464 5 0.336 4 0.499 2 0.591
ECWMP-10 3 0.458 5 0.326 4 0.463 2 0.568
ECWMP-11 3 0.467 5 0.336 4 0.533 2 0.575
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Supplementary Table 891 Cluster prediction and probability estimates for the Quarter 3

SVM model s6 classification of the ECWMP
QUARTER 3 | Geometric Mean (4) Median (5) Trimmed

Mean (7) Mean (5)
Station name | Cluster | Est. | Cluster | Est. | Cluster | Est. | Cluster | Est.
ECWMP-01 7 0.436 1 0.435 1 0.447 4 0.691
ECWMP-02 7 0.461 1 0.582 1 0.561 4 0.784
ECWMP-03 7 0.427 3 0.552 3 0.491 4 0.841
ECWMP-04 7 0.446 3 0.48 3 0.517 4 0.847
ECWMP-05 7 0.491 1 0.526 1 0.529 4 0.872
ECWMP-06 7 0.501 1 0.545 1 0.526 4 0.852
ECWMP-07 7 0.512 1 0.636 1 0.668 4 0.807
ECWMP-08 7 0.485 1 0.487 3 0.488 4 0.858
ECWMP-09 7 0.506 1 0.63 1 0.693 4 0.789
ECWMP-10 7 0.517 1 0.665 1 0.771 4 0.807
ECWMP-11 7 0.491 1 0.596 1 0.651 4 0.76

Supplementary Table 8101 Cluster prediction and probability estimates for the Quarter 4

SVM model s6 classification of the ECWMP
QUARTER 4 | Geometric Mean (5) Median (6) Trimmed

Mean (5) Mean (7)
Station name | Cluster | Est. | Cluster | Est. | Cluster | Est. | Cluster | Est.
ECWMP-01 5 0.346 3 0.404 6 0.534 2 0.448
ECWMP-02 5 0.345 3 0.483 6 0.578 2 0.522
ECWMP-03 1 0.655 2 0.576 5 0.524 1 0.469
ECWMP-04 1 0.591 2 0.494 5 0.47 1 0.441
ECWMP-05 1 0.443 3 0.477 6 0.589 2 0.449
ECWMP-06 5 0.457 3 0.483 6 0.603 2 0.479
ECWMP-07 5 0.471 3 0.546 6 0.715 2 0.576
ECWMP-08 1 0.441 3 0.456 6 0.562 2 0.411
ECWMP-09 5 0.439 3 0.532 6 0.718 2 0.566
ECWMP-10 5 0.429 3 0.539 6 0.739 2 0.57
ECWMP-11 5 0.424 3 0.52 6 0.702 2 0.549
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ECWMP Cluster Range Accuracy

Supplementary Table 911 The percentage of water quality variables from the ECWMP dataset thafell within the range of the cluster to
which it was assgned for the annual datasets; fghlighted values classified the highest percentage of variables within the specified range

S0¢

among different models for a given station

Annual SVM Model Cluster Range Accuracy Annual LDA Model Cluster Range Accuracy
ECWMP-01 78.6 71.4 85.7 85.7 64.3 57.1 85.7 78.6
ECWMP-02 71.4 92.9 78.6 78.6 71.4 85.7 71.4 35.7
ECWMP-03 78.6 71.4 78.6 64.3 64.3 78.6 78.6 85.7
ECWMP-04 78.6 85.7 85.7 78.6 78.6 71.4 57.1 28.6
ECWMP-05 64.3 71.4 78.6 57.1 71.4 14.3 85.7 71.4
ECWMP-06 78.6 71.4 78.6 78.6 78.6 57.1 78.6 71.4
ECWMP-07 78.6 71.4 71.4 85.7 78.6 35.7 78.6 71.4
ECWMP-08 85.7 71.4 71.4 78.6 85.7 50.0 714 78.6
ECWMP-09 85.7 57.1 71.4 85.7 85.7 35.7 85.7 714
ECWMP-10 78.6 57.1 85.7 71.4 78.6 50.0 85.7 64.3
ECWMP-11 64.3 57.1 64.3 64.3 57.1 50.0 714 57.1




Supplementary Table 921 The percentage of water quality variables from the ECWMP dataset that fell within the range of the cluster to
which it was assignd for the quarter 1 datasets; highlighted values classified the highest percentage of variables within the specified
range among diferent models for a given station

90¢

Quarter 1 SVM Cluster Range Accuracy Quarter 1 LDA Cluster Range Accuracy
ECWMP-01 57.1 57.1 85.7 64.3 50.0 0.0 14.3 50.0
ECWMP-02 57.1 64.3 42.9 78.6 71.4 42.9 57.1 78.6
ECWMP-03 50.0 78.6 42.9 64.3 85.7 78.6 64.3 71.4
ECWMP-04 71.4 64.3 35.7 78.6 64.3 64.3 78.6 28.6
ECWMP-05 57.1 71.4 57.1 50.0 64.3 35.7 71.4 28.6
ECWMP-06 57.1 50.0 64.3 71.4 64.3 21.4 57.1 57.1
ECWMP-07 71.4 57.1 71.4 64.3 78.6 14.3 14.3 50.0
ECWMP-08 71.4 57.1 78.6 71.4 50.0 28.6 78.6 64.3
ECWMP-09 64.3 57.1 71.4 71.4 78.6 7.1 14.3 50.0
ECWMP-10 71.4 64.3 64.3 71.4 71.4 7.1 14.3 57.1
ECWMP-11 71.4 64.3 57.1 71.4 78.6 14.3 21.4 57.1




Supplementary Table 931 The percentage of water quality variables from the ECWMP dataset that fell within the range of the cluster to
which it was assignd for the quarter 2 datasets; highlighted values classified the highest percentage wériables within the specified
range among diffeent models for a given station

L0¢

Quarter 2 SVM Cluster Range Accuracy Quarter 2 LDA Cluster Range Accuracy
Station Geometric Mean Median Trimmed Geometric Mean Median Trimmed

Mean SVM | SVM SVM Mean SVM | Mean LDA LDA LDA Mean LDA
ECWMP-01 78.6 35.7 50.0 71.4 42.9 71.4 71.4 28.6
ECWMP-02 50.0 21.4 28.6 64.3 42.9 92.9 71.4 35.7
ECWMP-03 50.0 42.9 50.0 64.3 71.4 57.1 71.4 78.6
ECWMP-04 71.4 35.7 50.0 78.6 57.1 71.4 78.6 42.9
ECWMP-05 35.7 35.7 50.0 50.0 71.4 28.6 71.4 21.4
ECWMP-06 57.1 35.7 28.6 78.6 42.9 42.9 42.9 50.0
ECWMP-07 50.0 21.4 28.6 57.1 35.7 42.9 50.0 28.6
ECWMP-08 42.9 28.6 28.6 64.3 35.7 57.1 64.3 35.7
ECWMP-09 50.0 21.4 21.4 64.3 28.6 35.7 28.6 28.6
ECWMP-10 64.3 35.7 42.9 64.3 64.3 50.0 57.1 42.9
ECWMP-11 50.0 21.4 42.9 57.1 42.9 42.9 50.0 28.6




Supplementary Table 941 The percentage of water quality variables from the ECWMP dataset that fell within the range of the cluster to
which it was assignd for the quarter 3 datasets; lighlighted values classified the highest percentage of variables within the specified
range among diffeent models for a given station

80¢

Quarter 3 SVM Cluster Range Accuracy Quarter 3 LDA Cluster Range Accuracy
Station Geometric | Mean Median Trimmed Geometric Mean Median Trimmed

Mean SVM | SVM SVM Mean SVM | Mean LDA LDA LDA Mean LDA
ECWMP-01 92.9 85.7 42.9 85.7 42.9 50.0 71.4 85.7
ECWMP-02 50.0 42.9 35.7 57.1 42.9 57.1 92.9 42.9
ECWMP-03 42.9 64.3 28.6 57.1 78.6 57.1 35.7 35.7
ECWMP-04 64.3 78.6 35.7 64.3 71.4 50.0 28.6 71.4
ECWMP-05 50.0 57.1 64.3 57.1 71.4 21.4 28.6 57.1
ECWMP -06 57.1 64.3 64.3 71.4 57.1 21.4 35.7 57.1
ECWMP-07 42.9 50.0 28.6 50.0 50.0 28.6 28.6 42.9
ECWMP-08 64.3 78.6 50.0 78.6 64.3 50.0 78.6 71.4
ECWMP-09 50.0 42.9 28.6 35.7 71.4 21.4 42.9 35.7
ECWMP-10 50.0 42.9 21.4 42.9 64.3 28.6 50.0 35.7
ECWMP-11 42.9 50.0 28.6 42.9 42.9 35.7 35.7 42.9




Supplementary Table 951 The percentage of water quality variables from the ECWMP dataset that fell within the range of the cluster to
which it was assignd for the quarter 4 datasets; lighlighted values classified the highest percentage of variables within the specified
range among diffeent models for a given station

60¢

Quarter 4 SVM Cluster Range Accuracy Quarter 4 LDA Cluster Range Accuragy
Station Geometric Mean Median Trimmed Geometric Mean Median Trimmed

Mean SVM SVM SVM Mean SVM | Mean LDA LDA LDA Mean LDA
ECWMP-01 42.9 50.0 42.9 50.0 35.7 50.0 50.0 42.9
ECWMP-02 57.1 42.9 50.0 50.0 57.1 78.6 64.3 64.3
ECWMP-03 35.7 64.3 57.1 57.1 357 42.9 35.7 42.9
ECWMP-04 50.0 64.3 50.0 50.0 42.9 57.1 78.6 50.0
ECWMP-05 50.0 35.7 42.9 35.7 28.6 57.1 35.7 50.0
ECWMP-06 42.9 57.1 50.0 50.0 35.7 50.0 57.1 35.7
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Supplementary Figure 211 DaviesBouldin indices plots for the cluster analysisof the
annual factor datasets; ive clusters were selected for the geometric mean dataset, six
clusters for the mean dataset, five clusters for the median dataset, and five clustéor the
trimmed mean dataset

228




Quarter 1 Factor Clusters: Davi&®uldin
Indices Plot

2.2

1.8
1.6
x
3
S 14 = (Geomean
g = |\|ean
== \edian
= Trimmed Mean
1.2

| N/

\

N

0.6 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10

7

# of Clusters

SupplementaryFigure 227 DaviesBouldin indices plots for the cluster analysis othe
guarter 1 factor datasets ifve clusters were selected for the geometric mean dataset, ten
clusters for the mean dataset, nine clusters for the median dataset, and eight clusttor the
trimmed mean dataset
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Supplementary Figure 231 DaviesBouldin indices plots for the cluster analysis othe
guarter 2 factor datasets; gven clusters were selected for the geometric mean dataset, five
clusters for the mean dataset, five clusters fahe median dataset, and seven clustefor the
trimmed mean dataset
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Supplementary Figure 247 DaviesBouldin indices plots for the cluster analysis othe
quarter 3 factor datasets; fve clusters were selected for the geometric mean dataset, seven
clusters for the mean dataset, five clusters for the median dataset, and five clustéor the
trimmed mean dataset
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Supplementary Figure 251 DaviesBouldin indices plots for the cluster analysis othe
quarter 4 factor datasets; gven clusters were seleatefor the geometric mean dataset, five
clusters for the mean dataset, seven clusters for the median dataset, and six clisster the
trimmed mean dataset
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Supplementary Figure 267 DaviesBouldin indices plots for the cluster analysis bthe
annual SOM datasets; €ght clusters were selected for the geometric mean dataset, three
clusters for the mean dataset, eight clusters for the median dataset, and seven clisster
the trimmed mean dataset
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Supplementary Figure 277 DaviesBouldin indices plot for the cluster analysisof the

guarter 1 SOM datasets nine clusters were selected for the geometric mean dataset, seven
clusters for the mean dataset, six clusters for the median dataset, and six clustior the
trimmed mean dataset
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Quarter 2 SOM Clusters: DaviBsuldin
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Supplementary Figure 281 DaviesBouldin indices plot for the cluster analysisof the
guarter 2 SOM datasets; rine clusters were selected for the geometric mean dataset, nine
clusters for the mean dataset, eight clusters for the median dataset, and six clustfor the
trimmed mean dataset
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Quarter 3 SOM Clusters: DaviBsuldin
Indices Plot
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Supplementary Figure 297 DaviesBouldin indices plot for the cluster analysisof the
guarter 3 SOM datasets; gven clusters were selected for the geometric mean dataset, four
clusters for the mean dataset, five clusters for the median daget, and four clustes for the
trimmed mean dataset
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Quarter 4 SOM Clusters: DaviBsuldin
Indices Plot
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Supplementary Figure 21071 DaviesBouldin indices plot for the cluster analysiof the
guarter 4 SOM datasets; fve clusters were selected for the geometric mean dataset, five
clusters for the mean d#aset, six clusters for the median dataset, and seven clustéor the
trimmed mean dataset
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SOM Unified Distance Matrices
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Supplementary Figure 311 Annual Mean dataset UMatrix and station organization on the SOM
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Supplementary Figure 341 Annual Geometric Mean dataset UMatrix and station organization on the SOM
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Supplementary Figure 361 Quarter 1 Median dataset UMatrix and station organization on the SOM
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Supplementary Figure 371 Quarter 1 Trimmed Mean dataset UMatrix an
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Supplementary Figure 3117 Quarter 2 Trimmed Mean dataset UMatrix
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Supplementary Figure 3147 Quarter 3 Median dataset U-Matrix and station organization on the SOM
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Supplementary Figure 3157 Quarter 3 Trimmed Mean dataset UMatrix and station organization on the SOM
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Supplementary Figure 3167 Quarter 3 Geometric Mean dataset UMatrix and station organization on the SOM
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Supplementary Figure 3177 Quarter 4 Mean dataset UMatrix and station organization on the SOM
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Supplementary Figure 31871 Quarter 4 Median dataset UMatrix and station organization on the SOM
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Supplementary Figure 3197 Quarter 4 Trimmed Mean dataset UMatrix and station organization on the SOM
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SOM Cluster Arrangements

MC-35 EC-21 BL-54

BWC-4 WR-319

EW-163 SND-4

EW-94

EW-79 30 EV-1

EEL-1

Mu-20

N-2 5SLT-12

Supplementary Figure 411 SOM cluster configuration for the annual mean dataset
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FR-54 FR-17 BWC-4 MC-18 L5T-2  IN-2

EW-168

BL7
EW-239

WR-318

WR-348

WR-162 WR-134

WH-210 WR-152

Supplementary Figure 427 SOM cluster configuration for the annual median dataset
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WR-309 WR-2T9 WR-293 CiC-17 BL-&4

EC-21

WC-9
WR-243

WR-210

EWv-54 SNO-4

EWV/-79

EWW-1

EEL-1 EEL-3& VF-38 GC-8 MU-20

Supplementary Figure 4317 SOM cluster configuration for the annual trimmed mean
dataset
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IM-2

KMuU-20

EVW-79

EW-34

WH-182 WR-210

Supplemenary Figure 4.47 SOM cluster configuration for the annual geometric mean
dataset

261



WR-162 SND-4

WR-192

WR-210 EW-168 BWC-4

WR-319

WR-279 : BL.7

WR-309 WR-293 WLC-2 i SGR-1 MC-35

Supplementary Figure 457 SOM cluster configuration for the quarter 1 mean dataset
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WH-293 BL-54

WR-309 WLC-2

WR-279

WC-9

WR-B1

WR-45

WR-15 WF-38 GCS 5LT12  IN-2

Supplementary Figure 461 SOM cluster configuration for the quarter 1 median dataset
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WR-279 WR-134 WR-81

WR-309 WR WH-19

FC-7

WR-319

WR-345

EW-239 BWC-4

L5T-2 IN-2 5LT-12

Supplementary Figure 471 SOM cluster configuration for the quarter 1 timmed mean
dataset
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MC-35 MC-18 WR-343 SLT-12  IN-2

BWC-4

WH-319 4

FC-T

WR-309

WR-279 WR-248 MWC-5 WR-192 WR-210

Supplementary Figure 481 SOM cluster configuration for the quarter 1 geometrc mean
dataset
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WR-192
WR-210

[WC-9 WR-279

WR-248

WR-293

EW-94

EEL-32

WR-51 WR-134 WR-162 FR-1T EW } BLY MC-35

Supplementary Figure 491 SOM cluster configuration for the quarter 2 mean dataset
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KMU-20

BEW-78

WLC-2

WR-45

WR-19 WR-81 WR-134

Supplementary Figure 4107 SOM cluster configuration for the quarter 2 median dataset
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MC-18 EW-163 BWC-4 FR-17 MC-35

EW-79 SMND-4 : Ew-Z38 BLY

MU-20 WR-319 SGR-1

EW-94

EEL-1

6 WR-182
WR-19
WR-4E WH-81 WR-134

Supplementary Figure 4117 SOM cluster configuration for the quarter 2 trimmed mean
dataset
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SLT-12  IN-2  L5T-2 WMC-35

1

WR-293
WC-8 WR-248

WR-192

WR-81 WR-134 WR-162 WR-210

Supplementary Figure 4127 SOM cluster configuration for the quarter 2 geometric mean
dataset
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N-2  SLT-12

MU-20

FC-06

3 EVW-1  EELA

WH-19

AIO_ART WH_1S A o
WR-1682 WR-134 WH-31 WR-46

Supplementary Figure 4137 SOM cluster configuration for the quarter 3 mean dataset
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MC-35 FR-1T

KU-20

EW-T9

WR-2593 E\W-0d

WR-309 WR-134 WR-81

Supplementary Figure 4147 SOM cluster configuration for the quarter 3 median dataset
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WR-18

WR-134 WR-81 VWR_4E

EW-1 EEL-1

SLT-12

EEL-38 LST-2 Mu-20

Supplementary Figure 4157 SOM cluster configuration for the quarter 3 trimmed mean
dataset
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WR-210

WR-162 WR-192

EW-94

WLC-2

WR-345

WR-319 SGRA1

SND-4 EVW-235

SLT-12 MC-13

MU-20  IN-2 EEL-38 LS5T-2 EW-168 BWC-4 FR-17 MC-35

Supplementary Figure 4167 SOM cluster configuration for the quarter 3 geomeric mean
dataset
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WR-Z75 WR-253

EC-21 CIC-17

EW-84

EVW-79

WR-21

EW-1

FEL-1 EEL-38 gl MU-20

Supplementary Figure 4177 SOM cluster configuration for the quarter 4 mean dataset

274



WR-319
WR-348

WLC-2

MC-3

WR-248

MC-18

WWR-309 4 EW-2Z39 EW-163

WR-293 : FC-26 MC-35 BWC-4

Supplementary Figure 4187 SOM cluster configuration for the quarter 4 median dataset
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WR-210 WR-192 SHD-4

FC-0.6

WH-162

WR-134

IN-2 MU-Z20

5T-2 5LT-12

Supplementary Figure 4197 SOM cluster canfiguration for the quarter 4 trimmed mean
dataset
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WR-279 WR-309

WHR-283 WR-248 MWC-5 WR-162 WR-134

EWV-1

EEL-1 EEL-3&

Supplementary Figure 4207 SOM cluster configuration for the quarter 4 geometric mean
dataset
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Mean and Standard Deviation B&ots of Factor Clusters

Annual Mean Subsurface Flow Factor
Cluster Means and Standard
Deviation

—

CluSter 1—Cluster 2 Clu+ter3 Cluster4—Cluster 5 Clultere

Supplementary Figure 511 Cluster mean @mparison for the subsurface flow associated
factor for the annual mean dataset

Annual Mean Organics Associated
Factor Cluster Means and Standard
Deviation

A
Cluster 1 Clugter 2 CluTerS Clusfter4 CIu%terS Cluster 6

/

Supplementary Figure 521 Cluster mean comparison for the organic associated fear for
the annual mean dataset
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Annual Mean Particle Associated
Factor Cluster Means and Standard
Deviation

Cluster 1 Cluster 2 Cluster 3 CIuJ.ter4 CIuTterS Cluster 6

‘ A
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Supplementary Figure 531 Cluster mean comparison for theparticle associated fator for
the annual mean dataset

Annual Mean Redox Condition Factor
Cluster Means and Standard
Deviation

1"/ A

Clueterl Cluiterz Cluster3— Cluster 4 Cluster 5 Cluster-6

Supplementary Figure 541 Cluster mean comparison for the redox conditions faor for
the annual mean dataset
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Annual Median Subsurface Flow
Factor Cluster Means and Standard
Deviation
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Cluster1 CIu:Ler 2 Cluster3 Clulter 4 Cqu,ter 5
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Supplementary Figure 551 Cluster mean comparison for the subsurface flow associate
factor for the annual median dataset

Annual Median Organics Associated
Factor Cluster Means and Standard
Deviation

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
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Supplementary Figure 561 Cluster mean comparison for the organics associated facttor
the annual median dataset
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Annual Median Particle Associated
Factor Cluster Means and Standard
Deviation

Cluster 1 CIuTter 2 CluTter 3 Cluster 4 Cluster 5

A

Supplementary Figure 571 Cluster mean comparison for the particle associated factdor
the annual median dataset

Annual Median Redox Condition
Factor Cluster Means and Standard
Deviation
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Cluﬁter 1 Cluster-2 Cluster-3 Cluster-4 Clu%ter 5
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Supplementary Figure 581 Cluster mean comparison for the redox conditions factofor
the annual median dataset
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Annual Trimmed Mean Subsurface
Flow Associated Cluster Means and
Standard Deviation

| A

Cluster 1 CIualter 2 Clusfter 3 Cluster 4 Clu%ter 5
| A

Supplementary Figure 591 Cluster mean comparison for the subsurface flow associated
factor for the annual trimmed mean dataset

Annual Trimmed Mean Organic
Associated Cluster Means and
Standard Deviation

Cluster 1 Cluster 2 CIuTter 3 Cluster 4 Cluster 5

Supplementary Figure 5107 Cluster mean comparison for the organics associated factor
for the annual trimmed mean dataset
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Annual Trimmed Mean Particle
Associated Cluster Means and
Standard Deviation

A
Clus*;ter 1 Cluster-2 Cluster-3 Clu'Tter 4 Cluster5

Supplementary Figure 5117 Cluster mean comparison for the particle associated factor for
the annual trimmed mean cataset

Annual Trimmed Mean Redox
Associated Cluster Means and
Standard Deviation

|
A A

Cluster 1 Cluster 2 Clu%ter 3 Clu;ter 4 Cluster 5

Supplementary Figure 5127 Cluster mean comparison for the redox conditions factor for
the annual trimmed mean dataset
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Annual Geomean Subsurface Flow
Factor Cluster Means and Standard
Deviation

Clulter 1 Cluster2 CIuTter 3 Cluiter 4 Cluster 5

/ | v

Supplementary Figure 5137 Cluster mean comparison for the subsurface flow associated
factor for th e annual geometric mearlataset

Annual Geomean Organics
Associated Factor Cluster Means and
Standard Deviation

A |
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Cluster-1 Cluster-2 CIu’Tter 3 Cluster-4 Cluster5
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Supplementary Figure 5147 Cluster mean comparison for the organics associated factor
for the annual geometric mean dataset
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Annual Geomean Particle Associated
Factor Cluster Means and Standard
Deviation

/'| ‘
Cluster1 CI\Ter 2 Cluster-3 CIuTter 4 CIuT\er 5
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Supplementary Figure 5157 Cluster mean comparison for the particle associated factor for
the annual geometric men dataset

Annual Geomean Redox Condition
Factor Cluster Means and Standard
Deviation

Cluster1 Cluiter 2 Cluz#ter 3 Cluster 4 Cluster 5
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Supplementary Figure 51671 Cluster mean comparison for the redox conditions factor for
the annual geometric mean dataset
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Q1 Mean Subsurface Flow Factor
Cluster Means and Standard
Deviation
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Supplementary Figure 5177 Cluster mean comparison for the subsurface flow associated
factor for the quarter 1 meandataset
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Supplementary Figure 5187 Cluster mean comparison for the organics associated factor
for the quarter 1 mean dataset
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Cluster Means and Standard
Deviation
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Supplementary Figure 5197 Cluster mean comparison for the particle associated factdor
the quarter 1 mean dataset
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Supplementary Figure 5207 Cluster mean comparison for the redox conditions associated
factor for the quarter 1 mean dataset
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Cluster Means and Standard
Deviation

| A | A
| :
" | A

0 I
Cluster CILlster Cluster Cluster Cluster Cluster CILj]ster Cluster Cluster
£

|
n
1 2 3 4 5 6 8 9

'/
/ '

Supplementary Figure 5217 Cluster mean comparison for the subsurface flow associated
factor for the quarter 1 median dataset

Q1 Median Organic Associated Factor
Cluster Means and Standard
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Supplementary Figure 5227 Cluster mean comparison for the organics associated factor
for the quarter 1 median dataset
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Supplementary Figure 5237 Cluster mean comparison for the particle associated factoof
the quarter 1 median dataset
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Supplementary Figure 5.247 Cluster mean comparison for the redox conditions factordr
the quarter 1 median dataset
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Q1 Median Temperature Factor
Cluster Means and Standard
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Supplementary Figure 52571 Cluster mean comparison for the temperature associated
factor for the quarter 1 median dataset

Q1 Trimmed Mean Subsurface Flow
Factor Cluster Means and Standard
Deviation

Supplementary Figure5.267 Cluster mean comparison for the subsurface flow associated
factor for the quarter 1 trimmed mean dataset
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Supplementary Figure 5277 Cluster mean comparison for the organics associated factor
for the quarter 1 trimmed mean dataset
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SupplementaryFigure 52871 Cluster mean comparison for the particle associated factor for
the quarter 1 trimmed mean dataset
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Supplementary Figure 5297 Cluster mean comparison for the redox conditions factor for
the quarter 1 trimmed mean dataset
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SupplementaryFigure 5307 Cluster mean comparison for the subsurface flow associated
factor for the quarter 1 geometric mean dataset
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Supplementary Figure 5317 Cluster mean comparison for the organics associated factor
for the quarter 1 geometric mean dataset
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Supplementary Figure 53271 Cluster mean comparison for the particle associated factor for
the quarter 1 geometric mean dataset
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Supplementary Figure 5337 Cluster mean comparison for the redox conditions factor for
the quarter 1 geometric mean dataset
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Supplementary Figure 53471 Cluster mean comparison for the subsurface flow associated
factor for the quarter 2 mean dataset
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Supplementary Figure 5357 Cluster mean comparison for the organics associated factor
for the quarter 2 mean dataset
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Supplementary Figure 53671 Cluster mean comparison for the particle associated factdor
the quarter 2 mean dataset
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Supplementary Figure 53771 Cluster mean comparison for the redox conditions factofor
the quarter 2 mean dataset
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Supplementary Figure 53871 Cluster mean comparison for the subsurface flow associated
factor for the quarter 2 median dataset
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Cluster Means and Standard
Deviation
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—

Supplementary Figure 5397 Cluster mean comparison for the organics associated factor
for the quarter 2 median dataset
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Supplementary Figure 5407 Cluster mean comparison for the particle associated factoof
the quarter 2 median dataset
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Supplementary Figure 5417 Cluster mean comparison for the redox conditions factordr
the quarter 2 median dataset
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Supplementary Figure 5427 Cluster mean @mparison for the subsurface flow associated
factor for the quarter 2 trimmed mean dataset
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Supplementary Figure 5437 Cluster mean comparison for the organics associated factor
for the quarter 2 trimmed mean dataset

Q3 Trimmed Mean Particle Associated
Factor Cluster Means and Standard
Deviation

A
/ |

/

A '
CIu:Tter 1-Clusgter 2-Cluster-3 Cluﬁl;er4 Cluster5 CIu:{;terG Cluster-7
A |
I

Supplementary Figure 54471 Cluster mean comparison for the particle associated factor for
the quarter 2 trimmed mean dataset
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Supplementary Figure 5457 Cluster mean comparison for the redox conditions factor for
the quarter 2 trimmed mean dataset
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Supplementary Figure 54671 Cluster mean comparison for the subsurface flow associated
factor for the quarter 2 geometric mean dataset
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Supplementary Figure 5477 Cluster mean comparison for the organics associated factor
for the quarter 2 geometric mean dataset
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Supplementay Figure 5.4871 Cluster mean comparison for the particle associated factor for
the quarter 2 geometric mean dataset
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Supplementary Figure 5497 Cluster mean comparison for the redox conditions factor for
the quarter 2 geometric mean dataset
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Supplemenary Figure 5.507 Cluster mean comparison for the subsurface flow associated
factor for the quarter 3 mean dataset
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Supplementary Figure 5517 Cluster mean comparison for the organics associated factor
for the quarter 3 mean dataset
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Supplementary Figure 55271 Cluster mean comparison for the particle associated factdor
the quarter 3 mean dataset
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Supplementary Figure 55371 Cluster mean comparison for the redox conditions factofor
the quarter 3 mean dataset

Q3 Median Subsurface Flow Factor
Cluster Means and Standard Deviation

A |
Cluster1 CIu:Lter ) CIU’Tter 3 Clus#ter 4 CIuTter 5
A A
‘ |

Supplementary Figure 55471 Cluster mean comparison for the subsurface flow associated
factor for the quarter 3 median dataset
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Supplementary Figure 5557 Cluster mean comparison for the organics associated factor
for the quarter 3 median dataset
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Supplementary Figure 55671 Cluster mean comparison for the particle associated factordr
the quarter 3 median dataset
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Supplementary Figure 55771 Cluster mean comparison for the redox conditions factordr
the quarter 3 median dataset
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Supplementary Figure 55871 Cluster mean comparison or the subsurface flow associated
factor for the quarter 3 trimmed mean dataset
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Supplementary Figure 55971 Cluster mean comparison for the organics associated factor
for the quarter 3 trimmed mean dataset
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Supplementary Figure 5607 Cluster mean comgrison for the particle associated factor for
the quarter 3 trimmed mean dataset
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Supplementary Figure 5617 Cluster mean comparison for the redox conditions factor for
the quarter 3 trimmed mean dataset
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Supplementary Figure 56271 Cluster mean compaison for the subsurface flow associated
factor for the quarter 3 geometric mean dataset
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Supplementary Figure 5637 Cluster mean comparison for the organics associated factor
for the quarter 3 geometric mean dataset
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Supplementary Figure 56471 Cluster mean comparison for the particle associated factor for
the quarter 3 geometric mean dataset
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Supplementary Figure 56571 Cluster mean comparison for the redox conditions factor for
the quarter 3 geometric mean dataset
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Supplementary Figure 56671 Cluster mean comparison for the subsurface flow associated
factor for the quarter 4 mean dataset
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Supplementary Figure 5677 Cluster mean comparison for the organics associated factor
for the quarter 4 mean dataset
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Supplementary Figure 56871 Cluster meancomparison for the particle associated factofor
the quarter 4 mean dataset
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Supplementary Figure 56971 Cluster mean comparison for the redox conditions factofor
the quarter 4 mean dataset
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Supplementary Figure 5707 Cluster mean comparison for the subsurface flow associated
factor for the quarter 4 median dataset
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Supplementary Figure 5717 Cluster mean comparison for the organics associated factor
for the quarter 4 median dataset
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Supplementary Figure 5727 Cluster mean comparison for the péticle associated factor or
the quarter 4 median dataset
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Supplementary Figure 57371 Cluster mean comparison for the redox conditions factordr
the quarter 4 median dataset
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Supplementary Figure 5747 Cluster mean comparison for the subsurface flovassociated
factor for the quarter 4 trimmed mean dataset
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Supplementary Figure 5757 Cluster mean comparison for the organics associated factor
for the quarter 4 trimmed mean dataset
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Supplementary Figure 57671 Cluster mean comparison for the particleassociated factor for
the quarter 4 trimmed mean dataset
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Supplementary Figure 5777 Cluster mean comparison for the redox conditions factor for
the quarter 4 trimmed mean dataset
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Supplementary Figure 57871 Cluster mean comparison for the subsurfacéow associated
factor for the quarter 4 geometric mean dataset
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Supplementary Figure 57971 Cluster mean comparison for the organics associated factor
for the quarter 4 geometric mean dataset
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Supplementary Figure 5807 Cluster mean comparison for the particle associated factor for
the quarter 4 geometric mean dataset
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Supplementary Figure 5817 Cluster mean comparison for the redox conditions factor for
the quarter 4 geometric mean dataset
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Spatial Distribution of Clusters

Annual Factor Mean Clusters

Supplementary Figure 611 Spatially distributed clustering for the Annual Mean factors
(EEL-1 belongs to cluster 1 and WRL34 belongs to cluster 6; SGR andBL-.7 both belong
to cluster 5)
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Annual Factor Median Clusters
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Supplementary Figure 621 Spatially distributed clustering for the Annual Median factors
(EEL-1 belongs to cluster 5 and WRL34 belongs to cluster 4; SGR. and BL-.7 bebng to
cluster 3)
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Annual Factor Trimmed
Mean Clusters

Supplementary Figure 631 Spatially distributed clustering for the Annual Trimmed Mean
factors (EEL-1 belongs to cluster 3 and WRL34 belongs taluster 5; SGR1 belongs to
cluster 5and BL-.7 belongs to cluster 1)

321



Annual Factor Geometric J/_/ N
Mean Clusters mgﬁ !fi : i
1 . \
2 EC-28; Wi _—,
o: ..
4 EC-1
®s { ]
R-210
8 wRdo2
B
R-162

Supplementary Figure 641 Spatially distributed clustering for the Annual Geometric
Mean factors (EEL-1 belongs to cluster 3 and WRL34 belongs to cluster 1; SGR and BL-
.7 belong tocluster 5)
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Annual SOM
Mean Clusters

Supplementary Figure 651 Spatially distributed clustering for the Annual Mean SOM
(EEL-1 belongs to cluster 2 and WRL34 belongs to cluster 3; SGR and BL-.7 belong to
cluster 1)
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Supplementary Figure 661 Spatially distributed clustering for the Annual Median SOM
(EEL-1 belongs to cluster 4 and WRL34 belongs to cluster 7; SGR and BL-.7 belong to
cluster 1)
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Supplementary Figure 671 Spatially distributed clustering for the Annual Trimmed Mean
SOM (EEL-1 belongs to cluster 5 and WRL34 belongs to cluster 3; SGR and BL-.7
belong to cluster 2)
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Supplementary Figure 681 Spatially distributed clustering for the Annual Geometric
Mean SOM (EEL-1 belongs to cluster 1 and WRL34 belongs to cluster 4; SGR and BL-.7
belong to cluster 3
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Supplementary Figure 691 Spatially distributed clustering for the Quarter 1 Mean factors
(EEL-1 and WR-134 belong to cluster 4; SGRL and BL-.7 belong to cluster 7)
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