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Abstract 15 

Variation in transcript abundance can contribute to both short-term environmental 16 

response and long-term evolutionary adaptation. Most studies are designed to assess differences 17 

in mean transcription levels and do not consider other potentially important and confounding 18 

sources of transcriptional variation. Detailed quantification of variation sources will improve our 19 

ability to detect and identify the mechanisms that contribute to genome-wide transcription 20 

changes that underpin adaptive responses. To quantify innate levels of expression variation, we 21 

measured mRNA levels for more than 5000 genes in the malaria parasite, Plasmodium 22 

falciparum, among clones derived from two parasite strains across biologically and 23 

experimentally replicated batches. Using a mixed effects model, we partitioned the total variation 24 

among four sources — between strain, within strain, environmental batch effects, and stochastic 25 

noise. We found 646 genes with significant variation attributable to at least one of these sources. 26 

These genes were categorized by their predominant variation source and further examined using 27 

gene ontology enrichment analysis to associate function with each source of variation. Genes 28 

with environmental batch effect and within strain transcript variation may contribute to 29 

phenotypic plasticity, while genes with between strain variation may contribute to adaptive 30 

responses and processes that lead to parasite strain-specific survival under varied conditions. 31 

32 

Key words: expression variation, malaria, transcription, cloning, microarray 33 



Introduction 34 

Biology studies generally seek to identify and account for differences in phenotypic 35 

means between groups. In Plasmodium falciparum, analysis of mean expression, e.g. of each 36 

gene in a parasite sample to determine the differential mean expression for these genes between 37 

samples and across perturbations, has provided valuable insights into the regulation of gene 38 

expression across the lifecycle (Bozdech et al., 2003; Llinas et al., 2006), gene functions (Le 39 

Roch et al., 2003), transcriptional regulatory mechanisms (De Silva et al., 2008; Campbell et al., 40 

2010; Painter et al., 2011), important clinical transcriptional phenotypes (Daily et al., 2007; 41 

Milner Jr et al., 2012) and the mechanism of action for antimalarial compounds (Mok et al., 42 

2014; Siwo et al., 2015a). These studies have revealed a high adaptive capacity in the malaria 43 

parasite transcriptome in response to its environment. To more finely parse the sources of this 44 

adaptive capacity and to search for the mechanisms that underlie it, it is necessary to quantify the 45 

variation in transcripts beyond the differences in mean values. Focusing on sample means alone 46 

collapses all of the complex biological processes occurring among parasites within a culture or 47 

an infection to a single value, obscuring potentially important, biologically distinct information, 48 

including, the variation in transcription abundance among individual cells. 49 

Studies in model organisms show the value of measuring the level of variation in 50 

expression across many genetically identical individuals that make up a population. For example, 51 

examination of variation in transcript abundance among single yeast cells within a population 52 

identified genes with expression changes based on cell sensing and adaptation to environmental 53 

events; these genes have a broad and heritable range of transcript abundances (Ansel et al., 54 

2008). Differing environments can drive the abundance of specific transcripts, and can modulate 55 

the extent of transcript variation among individual organisms or between populations of 56 



organisms and can be measured as differences in transcript abundance of a specific gene(s) 57 

before and after perturbation (Acar et al., 2008; Keren et al., 2015). Organisms as diverse as 58 

Arabidopsis and S. cerevisiae have a subset of transcripts for which expression variation is 59 

genetically derived, differs among strains, and can be mapped to genes that control it (Ansel et 60 

al., 2008; Jimenez-Gomez et al., 2011). 61 

For P. falciparum, whole genome transcription profiles have identified genes with 62 

variation among isogenic (clonal) parasites populations grown in identical environmental 63 

conditions (Scherf et al., 2008; Rovira-Graells et al., 2012; Reid et al., 2018). These three 64 

independent assessments revealed that approximately 5 percent of genes exhibit transcript 65 

variation among clones (genetically identical individual cells). Variation under these conditions 66 

was strongly correlated with binding to H3K9me3 and HP1, epigenetic marks that mediate 67 

reversible formation of heterochromatin to silence gene expression (Flueck et al., 2009; Lopez-68 

Rubio et al., 2009; Gómez-Díaz et al., 2017) and to the potentially variable binding of 69 

transcription initiators (Reid et al., 2018). This research suggests that variation in transcript 70 

abundance, including variation in ApiAP2 transcription factors and their downstream transcripts 71 

(Martins et al., 2017), is regulated at the epigenetic level (Rovira-Graells et al., 2012). While 72 

these studies describe a previously uncharacterized regulatory mechanism of transcription 73 

variation, they did not partition the observed variation among potential sources. Specifically, 74 

they did not distinguish the contribution of strain variation from variation due to experimental 75 

batches and variation within isogenic clones. 76 

Precise understanding of the basic biology of P. falciparum including, for example, the 77 

role of transcription in drug tolerance and resistance is clouded by the many possible sources that 78 

contribute to overall observed transcriptional variation for parasites at the same developmental 79 



stage and in the same physical condition. A more thorough understanding of this variation will 80 

improve our ability to distinguish signal from noise and perhaps illuminate new avenues for drug 81 

development and resistance prevention measures, e.g. antimalarial dosing regimens, and 82 

formulation of drug combinations. Partitioning the variation among relevant sources for each 83 

gene is an important first step. For example, knowing whether transcriptional variation in target 84 

genes is significantly impacted by the growth environment (e.g. pH differences or the presence 85 

of reactive oxygen species), or that the transcriptional variation is genotype specific (i.e. in the 86 

absence of mean differences) would, at a minimum, lead to better experimental designs. This 87 

knowledge could also potentially lead to more precise targeting, prioritization and administration 88 

of antimalarial drugs. Even in controlled in vitro experiments, knowledge of how much of the 89 

variation is due to differences between strains, environmental batch effects, individual parasite 90 

responses within an isogenic culture, and how much residual variation is due to other stochastic 91 

or unmeasured features will provide insights into the responses of P. falciparum to perturbation. 92 

To quantitatively assess the different sources that contribute to the total amount of 93 

variation in gene expression, we used microarray-based gene expression data collected for 94 

multiple clones of two P. falciparum strains, HB3 and Dd2, across two experimental growth 95 

dates (Fig. 1). Using a multilevel mixed effects model, we removed confounding variation 96 

related to experimental differences in parasite stage and partitioned the remaining variation in 97 

expression for each of the 5540 transcripts in the P. falciparum genome into four variation 98 

sources:  between strain variation (strain), within strain variation (clone), environmental batch 99 

effects, and stochastic variation. Our model quantitatively partitions the total variation in 100 

transcript abundance into these four sources. While disparate sources of variation are often 101 

broadly categorized as ‘noise,’ we use replicated batches of sub-cloned parasites from two 102 



different strains (Fig. 1) to show that there is important information about the underlying biology 103 

of P. falciparum hidden in the noise.  104 

 105 

Results 106 

Malaria parasites are well known to have a highly regulated cascade of transcription 107 

across the erythrocytic lifecycle. The expression pattern of most genes approximates a sinusoidal 108 

curve with a distinct maximum and minimum level during the cyclical erythrocytic cycle 109 

(Bozdech et al., 2003; Llinas et al., 2006). Samples containing poorly synchronized parasites or 110 

representing a different time in the developmental lifecycle (at a different point in the sinusoidal 111 

curve) could increase the overall amount of observed variation and, if not accounted for, 112 

significantly impact the data interpretation. Consequently, to assess the success of our 113 

experimental design in controlling for both developmental stage and synchrony, we first 114 

compared our whole genome in vitro transcription profiles to time-course data from 3D7 taken 115 

across the erythrocytic lifecycle (Fig. 2). By correlating our data across the developmental time-116 

course, it is clear that samples collected on 03/13 all are highly synchronized and were collected 117 

in the 16-20 hours post invasion (hpi) window. However, some samples collected on 07/14 118 

correlated most closely with an earlier time point of 8-10 hpi. Thus, while rigorous standard 119 

synchronization methods were used to collect ‘ring stage’ parasites, a subset of 07/14 samples 120 

were significantly offset in their cell cycle window. To account for and mathematically remove 121 

transcription variation due to differences in parasite staging, a variable for stage specific 122 

variation was included in the model (Equation 2). 123 



After accounting for stage-based variation, our model sequentially assessed genotype, 124 

batch, and clone-based transcriptional variation. The gene expression residual variation (Var(εij), 125 

Equation 2), which accounts for the variation around the mean among the samples, across all 126 

genes in the genome ranged from –3.03 to 5.54 with a median of zero. During the partitioning of 127 

variation among sources of interest, Var(εij) decreased based on the contribution of each source 128 

to the overall amount of variation. We identified 641 genes and 5 noncoding RNAs with 129 

statistically significant transcriptional variation due to one or more source. The remaining 130 

Var(εij) after accounting for genotype, environment, and clone-based variation ranged from –2.92 131 

to 2.18 for these 646 genes with a median of zero. For the remainder of the genes in the genome 132 

(n = 4894), which did not have significant variation based on one of the identified sources of 133 

interest, the range for Var(εij) was –3.49 to 5.54 with a median of zero. 134 

Model performance 135 

Model fit statistics and adjusted p-values for each gene for each factor are reported in 136 

Table S1. To confirm the model performance, several genes were individually visualized and 137 

assessed as each source of variation was added to the model. For example, both PF3D7_0831700 138 

(HSP70), and PF3D7_1415800 (a putative RNA methyl transferase) showed large overall 139 

variation in transcript abundance (Fig. 3). Our model discerned and effectively partitioned 140 

significant sources contributing to this variation at the level of genotype and environment. Fig 141 

3A-3J shows the successive portioning of variation in transcript abundance through plotting 142 

residual variation as each source is added to the model. For PF3D7_0831700, the genotype-143 

specific variation source was clearly distinguishable (A), whereas for PF3D7_1415800, no 144 

visible differences were observed for variation between HB3 and Dd2. Of note, the model was 145 

run on all samples simultaneously; however, we opted to display the genotypes (HB3 and Dd2) 146 



separately on the x-axis to emphasize this difference (see Methods for further model description). 147 

For both genes, removing stage-based variation did not substantially impact the variation among 148 

samples or between genotypes (Fig. 3B and 3G). When genotype was included in the model, and 149 

thus separated out from the other sources of variation (Fig. 3C and 3H), the mean level of 150 

residual transcript variation for PF3D7_0831700 was the same for strains HB3 and Dd2 (C) 151 

indicating that genotype was a significant source of overall variation in transcript abundance for 152 

this gene (P < 1.0E-13); this is typically credited to differential expression based on parasite 153 

isolate/strain. We observed no change to the residuals for PF3D7_1415800 (Fig3H), 154 

demonstrating that genotype did not contribute to the overall variation for this transcript. When 155 

environmental batch effect-based variation was added to the model (Fig. 3D and 3I), there was 156 

no significant change in the residuals for PF3D7_0831700 (D), indicating that for our study 157 

differences in the conditions between environmental batches did not contribute significantly to 158 

the variation for this particular gene. However, for PF3D7_1415800 (I) a significant reduction in 159 

residual variation was observed, indicating that environmental batch effects were a significant 160 

contributor to the overall variation for this gene (P = 3.72E-11). Finally, when clone was added 161 

as a source of variation to the model (Fig. 3E and 3J), the range of the remaining residual 162 

variation did change, but this was not statistically significantly for either depicted gene. This 163 

indicates that clonally-based sources of variation did not substantially contribute to the overall 164 

variation for these transcripts. Notably, for 12 genes not presented in Fig. 3, clone was the 165 

primary source of variation. In the full model, we also observe that the effect size of genotype-166 

based variation for PF3D7_0831700 is 0.98 and for PF3D7_1415800 the effect size for l batch 167 

effect-based variation is 0.83, indicating that most of the variation among samples is due to a 168 

single source. While all transcript variation has been accounted for among the included sources 169 



for PF3D7_0831700,  only 86% of the total variation has been accounted in gene 170 

PF3D7_1415800; our model attributed this remaining transcriptional variation to stochastic 171 

noise. 172 

Most genes have one significant source of variation 173 

While Fig. 3 closely examined two representative genes, our model comprehensively 174 

considered the sources of variation for all genes across the entire transcriptome. For each of the 175 

5540 transcripts, total variation was partitioned (Fig. 4A). The effect size of these sources 176 

represented zero to one hundred percent of the total variation observed among the genes with a 177 

median effect size across all genes of 0.21 for stage, 0.002 for genotype, 0.42 for batch effects, 178 

and zero for clone (Fig. 4B). After controlling for stage, 641 genes and 5 noncoding RNAs 179 

exhibited statistically significant transcriptional variation attributable to one or more sources of 180 

variation included in our model. Among the 646 transcripts with significant variation due to any 181 

source, most had a single statistically significant source of transcriptional variation (Fig. 5; Table 182 

S2). The large majority of these genes derived transcriptional variation from environmental batch 183 

effects (472). A smaller number of genes varied based on genotype (171) and only a few genes 184 

(12) exhibited significant clone-based variation. Among the noncoding RNAs three had 185 

significant transcript variation based on experimental batch, one based on genotype, and one 186 

based on clone. Nine genes had statistically significant transcriptional variation attributable to 187 

more than one source; seven of these had variation by both genotype and environmental batch, 188 

and two had variation due to both genotype and clone.  189 

To determine whether chromosomal location or structure contributed to transcriptional 190 

variation for any of the sources investigated, we mapped the genomic locations of 191 

transcriptionally variant genes onto their genomic locations. There were no significant patterns 192 



or enrichments for variable genes based on source, chromosome number, or chromosomal 193 

location (Fig. S1). 194 

Functional Enrichment of Genes by Source of Variation 195 

To determine whether genes that shared a primary source of transcriptional variation 196 

shared biological functions, gene ontology (GO) enrichment analyses of molecular functions and 197 

biological processes were performed on each category of genes reaching significance for 198 

variance due to genotype, environment, and clone (Table. S3). 199 

Nearly 30% of genes with significant genotype-based variation (53/171) belong to multi-200 

gene families including: rifin, stevor, and phist. As such, the most significantly enriched GO 201 

terms included adhesion to host, regulation of erythrocyte aggregation and antigenic variation 202 

(GO: 0044406, 0034118, and 0020033). For these genes, involved in host evasion, each parasite 203 

only transcribes and express one transcript from the many potential genes in each family leading 204 

to expected transcription variation of individual transcripts within a population of parasites. 205 

While approximately half of the genes had higher mean transcriptional abundance HB3 and half 206 

in Dd2, the coefficient of variation (CoV, variance divided by the mean, and thus decoupled 207 

from differences in means), was at least 2-fold higher in HB3 than Dd2 for half of these host 208 

response genes (24/53) compared to twenty percent of genes (11/53) for which the CoV for Dd2 209 

was higher (Table S4). Therefore, the observed level of genotype-based variation in host 210 

response genes could indicate differences in transcription regulatory mechanisms for host 211 

response genes between these two parasite strains.  212 

Although only two genes had significant genotype-based and clone-based variation 213 

(PF3D7_0935400 and PF3D7_1302100), similar functions and processes were enriched in the 214 



sets of genes that had only genotype-based or clone-based variation.  For example, our 215 

observation that adhesion, and aggregation were enriched functions in the clone-based gene list 216 

of genes (i.e., non-sequence based differences among genetically identical cells such as 217 

epigenetic marks) is consistent with an earlier report that most genes exhibiting variation among 218 

identical clones are members of these variable multi-gene families (Rovira-Graells et al., 2012). 219 

Many of these multi-gene families are positive for H9K3me3 and HP1 heterochromatin marks 220 

that silence expression and increase levels of variation (Flueck et al., 2009; Lopez-Rubio et al., 221 

2009). Thus, in addition to confirming prior findings about the variation in this category of 222 

genes, our data show that the amount of variance observed in highly variable gene families 223 

differs between genotypes. Consequently, both the mean and variation in transcript abundance of 224 

host response genes in malaria parasites differs based on strain, suggesting that the underlying 225 

genetic control of each of these is heritable and under selection. 226 

We did not observe an enrichment of stress response-related functions in the list of genes 227 

with environmental batch effect-based variation. This may reflect the tightly controlled nature of 228 

our experimental conditions in which rigorous protocols were designed to limit batch effects and 229 

did not introduce specific perturbations. This is notably distinct from other studies that 230 

intentionally test the effects of perturbations on transcript abundance and variation; 231 

consequently, our list of environmental batch-based variant genes is unlikely to contain genes 232 

with stress-related functions, reflecting the design of the experiment. 233 

Threonine-type endopeptidase activity was the only enriched environmentally variant 234 

molecular function (GO: 0004298). Endopeptidases are responsible for breaking proteins apart at 235 

specific amino acids for recycling of these molecular building blocks. Even non-stressful 236 

differences in experimental environments may vary in the amounts of accessible resources, thus 237 



high innate levels of variation in genes such as protein cleavage enzymes could provide a way 238 

for parasite populations to tune in to their environment, stressful or not, in real-time, and this 239 

type of innate plasticity has been observed in other organisms (Gasch et al., 2000; Girardot et al., 240 

2004). Most amino acid building blocks for malaria protein catabolism, including threonine, are 241 

derived by metabolizing host erythrocyte hemoglobin. Differences in the hemoglobin level of the 242 

host could promote differential expression of endopeptidases. While hemoglobin content within 243 

the cultures was not specifically measured, our data indicate differences in hemoglobin content 244 

may contribute to the observed environmental batch effect-based transcription variation of 245 

endopeptidase genes. For example, PF3D7_0931800, a subunit of the proteasome with 246 

threonine-type endopeptidase activity, had a mean abundance of 2317.9 and a CoV of 73.0 on 247 

our first sampling date. On the second sampling date, this transcript had a mean of 911.6 and a 248 

CoV of 31.7, exhibiting a strong shift in the mean, with the first experimental date having 2.54-249 

fold higher transcript abundance (P = 2.44E-10, Bonferroni adjusted; Table S4). 250 

Transcriptional and Translational Expression Variation 251 

Given their overall importance in regulating transcript abundance, we assessed the 252 

contribution of genotype to the transcriptional variation in genes involved in transcription and 253 

translational pathways. Differences in mean abundances or in the level of variation between 254 

genotypes in these transcripts could impact many downstream genes and result in substantial 255 

differences in gene expression regulation between the two parasite strains. We observed genes 256 

with genotype-based variation that are involved in transcription and translation. Variant genes 257 

involved in transcription including PF3D7_0522200 (P = 0.00016), a subunit of the general 258 

transcription factor, TFIID, had lower variation and lower mean expression in the drug resistant 259 

parasite Dd2. However, genes involved in translation, such as those that encode for ribosomal 260 



proteins PF3D7_0710900 (P = 0.01878) and PF3D7_1223900 (P = 0.02767), exhibited 261 

significantly higher variation and higher means in Dd2. 262 

While not noted in the gene ontology enrichment processes, several genes involved in 263 

transcription and translation were significantly variant based on environmental batch. Variant 264 

genes that could influence transcription included the AP2 transcription factor domain gene 265 

PF3D7_1429200, and genes regulating chromatin condensation (PF3D7_0403100, 266 

PF3D7_0711500) and histones (PF3D7_1224500, PF3D7_1355300). Several genes involved in 267 

translation were also variant based on environmental batch including translation initiation factors 268 

(PF3D7_0907600, PF3D7_1250600, PF3D7_1332800), tRNA genes (PF3D7_1105700, 269 

PF3D7_1315700), and RNA polymerases (PF3D7_0708100, PF3D7_0205500, 270 

PF3D7_0303300, PF3D7_1134700, PF3D7_1213700).  271 

 272 

Discussion 273 

This study dissects the biological sources that contribute to variation in gene expression 274 

in the malaria parasite. While most of the current scientific literature reports mean transcript 275 

abundance and dismisses variation as ‘noise,’ this study demonstrates that several biologically 276 

important sources contribute to the overall variation. By using a model to partition total variance, 277 

we assessed the quantitative contribution of each source for each transcript in the genome 278 

including stage, strain, environmental batch, clone, and stochastic variation. This partitioning 279 

provided a global and inclusive perspective of variation whereby the mechanisms underlying 280 

variation for each gene could be further investigated and better understood. Partitioning variation 281 

in this way required replication of samples for each source. This highly replicated data set 282 



included a total of 38 samples to parse variation across two stages within the lifecycle, two 283 

parasite strains, two different environmental batches, and among four subclones. Each of the 284 

identified sources of variation has important biological contributors and implications.  285 

The transcript abundance of many genes throughout the P. falciparum genome is highly 286 

dependent on the number hours post- red blood cell invasion of the parasite during the 287 

erythrocytic cycle (Llinas et al., 2006; De Silva et al., 2008; Campbell et al., 2010). Differences 288 

in parasite developmental stage within the erythrocytic lifecycle can significantly confound 289 

results. In our study, clones were tightly synchronized such that more than 90% of parasites 290 

where within a 4h developmental window. RNA was collected 24h after thin smears consisted 291 

predominantly of highly segmented schizonts. While this study design should have produced 292 

samples that corresponded to the same developmental stage, correlations across samples and to a 293 

commonly referenced set of samples taken across the lifecycle revealed distinct stage differences 294 

in our samples. We controlled for these stage differences by adding an additional source of 295 

variation to our model. Variation in transcript abundance due to stage was accounted for and 296 

quantitatively removed prior to assessing the amount of variation due to any of the other sources. 297 

After adjusting for stage variations, we observed that most variant genes have a single 298 

predominant source of variation, with the most prominent source being environmental batch.  299 

While previous reports suggested that 5% of the P. falciparum transcriptome is variant (Rovira-300 

Graells et al., 2012; Reid et al., 2018), we found 646 transcripts, encompassing 12.0% of the 301 

transcriptome (including five non-coding RNAs) had significant expression variation in vitro. By 302 

including environmental batch as a source of variation in our study, something that to our 303 

knowledge has not been done, we detected more genes with transcriptional variation than 304 

previous reports. Environmental batch effect-based variation was observed in 472 genes. This 305 



variation can result from the same parasite (genotype, clone) having altered expression due to 306 

differences in the external conditions. These conditions will vary to some extent even in well-307 

controlled experiments. For our study, potential variations in environmental batch conditions 308 

include red blood cell donor, media batch, parasitemia, and many other subtle and not directly 309 

controllable differences between experimental replicates/batches. Interestingly, we did not 310 

observe an enrichment of variant genes based on chromosomal location. Genes that were variant 311 

by genotype, environmental batch, and clone were dispersed throughout the genome and were 312 

not associated with subtelomeric regions or internal hypervariable regions. This suggests that 313 

transcriptional variation is not merely a product of currently understood structural genomic 314 

variability mechanisms.  315 

Environmental batch effects are important to understand because they may not uniformly 316 

impact every gene. The impact of different environments or experimental conditions may 317 

manifest as large amounts of expression variation in some genes, while there will be no change 318 

in variation for other genes. Little is currently known about environmental sensing and 319 

adaptation to different ‘normal’ environments by malaria parasites. Genes with environmental 320 

batch-based variation may have an important role in the environmental tuning processes. 321 

Additionally, genes that have shifts in mean expression or variation in response to subtle 322 

environmental cues are commonly overlooked in standard expression studies and can contribute 323 

significantly to batch effects if not considered during experimental design. We identified several 324 

genes involved in transcriptional and translational processes with environmental batch-based 325 

variation. Variation in these genes could propagate further throughout the transcriptome by 326 

affecting specific downstream genes through transcription factor binding, or influencing 327 

transcription variation broadly through variations in the timing of translation initiation. 328 



Excluding environmental batch-based variation from the study design, even under tightly 329 

controlled experimental conditions, can make the interpretation of results difficult as differences 330 

due to batch effects can be erroneously attributed to differences among genotypes or treatments. 331 

These results should encourage experimental procedures that are keenly aware of variation 332 

sources and study designs that allow for their accounting; these approaches will enhance the 333 

ability to detect differences due to the intended perturbation. 334 

Strain-based variation can result from differences in the base pair sequence of a gene or 335 

gene regulator such as a copy number variations (Stranger et al., 2007; Eastman et al., 2011; 336 

Miles et al., 2016). Among the four variation sources assessed in our experiment, this is the most 337 

widely researched and easiest type of variation to identify. We measure strain-based variation 338 

more precisely by accounting for stage and microenvironment variation in the same model with 339 

comparisons of expression variation levels per gene among HB3 and Dd2 clones. Clone-based 340 

variation occurs among cloned individuals with identical genotypes and may reflect deviations in 341 

the way the transcription machinery interacts with epigenetic features of a gene. While the DNA 342 

sequence of a gene in two genetically identical cells is the same, other differences in epigenetic 343 

marks among individual cells that have been identified in P. falciparum could include base pair 344 

methylation, histone acetylation, nucleosome positioning, or other epigenetic marks (Ay et al., 345 

2015). These epigenetic marks create variation by either altering the amount of time required to 346 

transcribe a sequence —resulting in more or fewer total copies, or by making the genetic 347 

sequence unavailable to transcription machinery thereby silencing gene expression. We have 348 

separated clonally-based variation from the total variation by taking whole transcriptome 349 

measurements of several first and second round clones with identical genotypes.  350 



When only considering coding genes with significant variation by genotype or by clone, 351 

our study identified 3.2% (171 genes) and 0.2% (12 genes) of the transcriptome as variant. The 352 

most significantly enriched functions for genes with genotype and clone-based transcript 353 

variation involved the parasite’s response to the human host. Thirty-two percent and fifty percent 354 

of genes variant by genotype and clone respectively belonged to multi-gene families including 355 

var, rifin, stevor, and phist gene families. These multi-gene families are well-known for their 356 

highly variable expression which aids in immune evasion (Gardner et al., 2002; Scherf et al., 357 

2008). Aside from multi-gene families, one potentially interesting gene involved in transcription 358 

had significant strain-based variation. One of the subunits for TFIID (PF3D7_0522200) had 359 

substantial different transcriptional variation between the HB3 and Dd2 strains. While the 360 

absence of RNA Pol II-associated TFIID binding in Plasmodium makes the role of TFIID 361 

unknown and likely different in malaria than in other eukaryotes (Callebaut et al., 2005) this 362 

findings is worth investigating in the future.  363 

The two parasite strains used in this study have substantially different drug resistant 364 

phenotypes. HB3 was originally isolated from Central America and has a high level of sensitivity 365 

to most antimalarial compounds. Dd2 was originally isolated from Southeast Asia after the 366 

emergence and fixation of chloroquine (CQ) resistance and underwent subsequent in vitro drug 367 

pressure with mefloquine which selected for a high level of resistance to 4-amino quinolone 368 

drugs (Oduola et al., 1988). The extended haplotype surrounding the causal mutation for CQ 369 

resistance, high level of linkage disequilibrium, and the lack of other haplotypes in Southeast 370 

Asia are hallmarks of a strong selective sweep (Wootton et al., 2002; Anderson, 2004; Su and 371 

Wootton, 2004). Based on the large overall impact CQ selection had on the genome and the 372 

transcriptome (Siwo et al., 2015b) of P. falciparum, and models based on laboratory experiments 373 



in E. coli that indicate strong selection increases variation (Ito et al., 2009; Eldar and Elowitz, 374 

2010), we hypothesized that Dd2 would have higher levels of transcriptome-wide variation than 375 

HB3. 376 

We found that, while genes with genotype-based variation have differences between 377 

means and genes with clone-based variation have differences in the CoV, these differences 378 

occurred on a gene-by-gene basis with neither HB3 nor Dd2 having overall higher levels of 379 

variation across the majority of genes for any source. However, when we investigated the 380 

differences between HB3 and Dd2 based on gene function, we found that variant genes involved 381 

in processes of antigenic variation and heat shock protein binding typically had larger 382 

transcriptional variation in HB3. This suggests that in non-stressful environments drug sensitive 383 

parasites have more variability in the amount of host response and stress response transcripts. As 384 

both antigenic variation and heat shock protein binding are important for response to the human 385 

immune system, genes with these functions are likely to be involved in the core environmental 386 

stress response for P. falciparum though further research is warranted to determine whether the 387 

amount of transcriptional variation in these genes changes during or after perturbations.  388 

Our results suggest a different possibility for genes involved in transcription regulatory 389 

processes. These functional categories of genes associated with growth and proliferation are 390 

transcriptionally repressed during stress in yeast (Gasch et al., 2000; Causton et al., 2001). We 391 

identified several genes involved with transcription and translation with significant 392 

transcriptional variation between two different standard and non-stressful environments 393 

including transcription factor AP2-O3 (PF3D7_1429200). While differences in transcription 394 

variation transcription factor associated with mosquito stage ookinete sexual stage (Modrzynska 395 

et al., 2017) are interesting to observe during the asexual trophozoite stage, we were unable to 396 



determine the persistence of this variation into the sexual stages the parasite. Though we are 397 

unable to determine in our experiments which components of this standard environment 398 

contributed to the observed variation in transcription and translation related genes, both means 399 

and variance in these and other genes with environmental batch-based variation tended to be 400 

higher for the first culture date (03/13) than for the second (07/14).  401 

Larger overall abundance together with highly variant amounts of transcriptional and 402 

translational machinery among genetically identical cells is consistent with a bet-hedging 403 

strategy in which a clonal population of cells with variant transcriptional phenotypes would be 404 

better suited to respond to wider range of future conditions (Seco-Hidalgo et al., 2015). 405 

Similarly, more overall ribosomes, and more variation in the amount of translational machinery 406 

could allow some cells to respond more rapidly to perturbation by adjusting the rate of protein 407 

synthesis. Understanding the baseline level and contributing sources of variation in these genes is 408 

valuable for developing a comprehensive biological interpretation of the changes seen after 409 

perturbation. 410 

While we have accounted for some of the more obvious and relevant sources of variation, 411 

additional unmeasured sources will remain, and this will include some degree of stochastic noise. 412 

For our study these include the differences in the precise amount of bio-available transcriptional 413 

molecules each cell has at any moment, the position of each cell in the overall 414 

microenvironment, and many others that cannot, as of yet, be experimentally controlled for. This 415 

source of noise also includes the variation in our ability to measure the expression level itself 416 

such as the binding kinetics between probes on our array and our sample, detection limits, and 417 

differences that are not robust to standard normalization analyses. 418 



Here we show that the total amount of variation in transcript abundance can be parsed 419 

using a mathematical model in Plasmodium. This model is generalizable to other data sets and 420 

could be used to explore the sources of variation under differing conditions in malaria and other 421 

organisms. In particular, we show that for a number of genes in P. falciparum, genotype 422 

contributes significantly to the total variation. This is an important feature of the parasite’s 423 

biology that has implications for the development of new drugs and drug combinations as these 424 

could be more or less potent in some areas of the world based on parasite genotype. Clone-based 425 

variation also contributed significantly to a small number of genes. Both genotype and clone-426 

based variation may be heritable and can be further explored to determine the regulatory 427 

mechanisms of variation within the parasite. 428 

Materials and Methods 429 

Parasite culture 430 

P. falciparum cultures of HB3 and Dd2 and parasite clones were grown under standard 431 

conditions as described by Trager & Jensen (Trager and Jensen, 1976). Briefly, parasites were 432 

thawed into 5mL of RPMI 1640 (Invitrogen, Carlsbad, CA) supplemented with 25mM HEPES, 433 

370μM hypoxanthine, 0.5% Albumax II (Invitrogen, Carlsbad, CA), 0.25% sodium bicarbonate 434 

(Mediatech, Inc., Manassas, Va) and 0.01 mg/mL gentamicin (Invitrogen, Carlsbad, CA), and 435 

5% hematocrit O positive red blood cells. Cultures were maintained at 37°C under an 436 

atmosphere of 90% N2, 5% O2, and 5%CO2.  437 

Study Design 438 

P. falciparum parasite lines HB3 and Dd2 were thawed from minimally passaged stocks 439 

previously expanded and frozen in 2002 and 2004 respectively. Cultures were established and 440 



cloned by limiting dilution in 96-well plates. Cloning plates were screened weekly by light 441 

microscopy and positive wells were transferred to individual culture flasks. Clones were frozen 442 

once they reached 1% parasitemia in 0.5mL aliquots. A single clone from HB3 and Dd2 was 443 

randomly selected to undergo additional secondary cloning. Parental lines and first round clones 444 

were thawed, grown, synchronized, and collected for RNA during the first experimental 445 

timepoint labelled 03/13. Parental lines, first round, and second round clones were thawed, 446 

grown, synchronized, and collected for RNA during the second experimental time point labelled 447 

07/14. Indicated first and second round clones (Fig. 1) were grown in triplicate during the second 448 

experimental date.  449 

These standard culture conditions were consistent across both culturing dates to prevent, 450 

in as much as possible, the addition of experimental noise. Parasites used on different dates, to 451 

assess differences in microenvironment, were thawed from the same passage of frozen parasite 452 

stocks. The primary difference between culture dates to which environmental variation can be 453 

attributed is the red blood cell donor.  454 

Cultures were synchronized three times across two lifecycles according to each parasite 455 

strain’s cycle time (Reilly Ayala et al., 2010) using 5% sorbitol. The first synchronization 456 

occurred during the mid-ring stage. Parasites were allowed to reinvade, and the second 457 

synchronization occurred one lifecycle and 3 h after the first – 53 h for HB3 and 47.6h for Dd2 458 

(cycle times are 50 h and 44.6 h, respectively)(Reilly et al., 2007). The third synchronization 459 

occurred 8 h after the second. Culture volume was increased to 20 mL during the 460 

synchronization cycles, and parasites were monitored by thin smear microscopy for re-invasion 461 

every 2 h after the third synchronization. As highly segmented schizonts are morphologically 462 

distinct, and this stage lasts for less than 4 h, only cultures with more than 90% of parasites in the 463 



highly segmented schizont were used, and this point was designated time zero (T0). RNA was 464 

collected 24 h after T0.  465 

The NF-54 parasite isolate, from which 3D7 was cloned, was also cultured and 466 

synchronized. Eight collections of this parasite occurred across a single asexual lifecycle at 2, 6, 467 

10, 14, 18, 22, 26, 30, 34, 38, 42, 46 hours. Cultures were washed with warm PBS, pelleted and 468 

flash frozen using liquid N2 and stored at −80°C for less than 2 weeks prior to RNA extraction.  469 

RNA extraction and cDNA synthesis 470 

Total parasite RNA was extracted from frozen red blood cell pellets using TriZol reagent 471 

(Invitrogen, Carlsbad, CA) as previously described (Bozdech et al., 2003). Quantity and quality 472 

of RNA was determined by Nanodrop (Nanodrop Technologies) and stored at -80°C. A total of 473 

300 ng RNA was used as starting material for cDNA synthesis using the Sigma WTA2 whole 474 

transcriptome amplification kit (Sigma Aldrich, St. Louis, MO).  475 

cDNA labelling and hybridization to exon microarrays 476 

A total of 1.0 μg cDNA was labeled using Cy3 dye attached to 65% A/T rich random 477 

hexamers (TriLink) as primers for cDNA synthesis by Klenow fragments (New England 478 

Biolabs). For the NF-54 reference, equal amounts of cDNA from each collection time were 479 

pooled prior to labelling. Then 2.5 μg of labeled cDNA was suspended in Agilent Expression 480 

Hybe Buffer and Blocking Agent (Agilent) and loaded onto whole transcriptome Agilent exon 481 

arrays (Turnbull et al., 2017). Hybridizations were incubated for 17h at 65°C at 12 rpm and 482 

washed according to standard protocols (Agilent). Multi-image TIFFs of the microarrays were 483 

obtained using a 2 μM scanner (Roche NimbleGen Inc., Madison, WI) and extracted using 484 

Agilent Feature Extraction software (Agilent).  485 



Data processing and normalization 486 

The Agilent exon array consists of 62,976 probes which provide transcriptional 487 

abundance information for 5540 genes in the malaria genome and 100 noncoding RNAs 488 

(Turnbull et al., 2017). Probes with intensities less than 1.5 standard deviations of background 489 

were first trimmed from the probe sets. A random sampling for 1000 probe sets was used to 490 

determine the 5% false discovery rate (FDR) for each array. Probes below the 5% FDR cut-off 491 

were also excluded from further analysis. All samples were then quantile normalized together in 492 

robust multi-array averaging to adjust and standardize distributions for the study. Probe intensity 493 

values were then averaged and transcriptional abundances were reported by exon and by gene.  494 

The transcriptional patterns of P. falciparum are highly associated with the progression 495 

through the asexual lifecycle from ring to schizont in which transcription of genes is turned on 496 

and off in a highly organized cascade. To account for known differences in asexual cycle time 497 

between the parasite strains used in this study and determine a normalized RNA expression level 498 

a pool of NF54 RNA from across the parasite lifecycle was run on the exon array and used as the 499 

denominator in a log2 ratio normalization. To further account for potential differences in the 500 

staging process of individual cultures, Spearman correlations of each log2 normalized whole 501 

genome transcription profile were then correlated to community standard profiles of 3D7 taken 502 

at hour intervals across the entire life cycle (Bozdech et al., 2003). The highest correlation value 503 

for each sample was used to determine the corrected hpi. Because subtle differences in stage 504 

during the trophozoite phase of the lifecycle can impact RNA abundance, and stage differences 505 

were not the focus of this investigation, this corrected hpi value was added to the model as an 506 

additional source of variation. Log2 normalized values were used for assessing variation and 507 



stage-based variation was accounted for prior to mathematically partitioning the remaining 508 

variation among the other identified biological sources. 509 

Model for partitioning variation 510 

Beginning from the base model, which includes the population mean (of clones 511 

measured) and the residual error (since we have not yet accounted for any sources of variation, 512 

the starting residual error includes all of the variation around the mean),  513 

����_���� =  �� + ��                                               (Equation 1) 514 

a random intercepts model was used to partition the starting residual error (εi) into two 515 

categories: variation due to stage (��), and residual unexplained variation due to all other sources 516 

(εij). 517 

����_���� =  �� + �� +  ��� (Equation 2) 518 

Here �� + �� represents the model’s estimate of the mean expression level for stage i.  519 

��� then retains the remaining variation not explained by stage. The total variation in gene 520 

expression can be represented by  521 

������ + ���� = ������� + �������� (Equation 3)  522 

�������� can be further decomposed to account for expression differences due to parasite 523 

genotype. 524 

����_������ = �� + �� + ��� + ���� (Equation 4) 525 

�� + �� + ��� represents the models estimate of stage i’s mean gene expression value for 526 

genotype j. The total variation in gene expression can be represented by  527 



������ + ��� + ����� = ������� + �������� + ���������.  (Equation 5) 528 

�������� provides an estimate of genotypic variation when parasites are tightly synchronized, 529 

and stage differences are controlled for.  530 

The remaining variation now consists of variation due to environmental batch-based 531 

conditions, individual sub-clones, and unexplained variation. Next, we account for the 532 

contribution of environmental batch (����) to the unexplained variation in the residuals (������. 533 

����_������� = �� + �� + ��� + ���� + �����  (Equation 6) 534 

In Equation 6, �� + �� + ��� + ���� represents the models estimate for the mean gene 535 

expression value for genotype j during stage i on a given date k. To this point, the model estimate 536 

variation in gene expression is thus represented by 537 

������ + ��� + ���� + ����� = ������� + �������� + ��������� + ����������.  538 

  (Equation 7) 539 

Environmental batch-based variation due to culture growth date has now been isolated as 540 

an important source of within strain variation. The only biologically identified source of 541 

variation left to account for in this study is based on individual sub-clones (�����). 542 

����_������� = �� + �� + ��� + ���� + ����� + ������ (Equation 8) 543 

In our final model Equation 8, �� + �� + ��� + ���� + ����� gives the estimated amount of 544 

gene expression variation for a given clone l of a specific genotype j, on a given date k, during 545 

lifecycle stage i. And the total variation in gene expression becomes 546 



������ + ��� + ���� + ���� + ������ = ������� + �������� + ��������� +  ���������� +547 

�����������.   (Equation 9) 548 

���������� gives an estimate of variation in gene expression among clones that is not due 549 

to growth conditions, or genetic differences between genotypes HB3 and Dd2. Thus, the starting 550 

unexplained residual variation has been partitioned based on three biologically important 551 

sources: genotype, environmental batch (growth date), and clone. The remaining residual 552 

variation ����������� gives the model’s estimate for any unaccounted-for variation (i.e. noise). 553 

For each source we determined if the partitioned amount of variation was significantly 554 

different from zero by calculating the observed difference in −2ln �"#$�"#ℎ&&�� for the model 555 

without the random effect (source) with the model containing the random effect. We compared 556 

this value to a reference distribution �'�
( + ')

(� 2⁄  of expected likelihood differences to 557 

determine a p value (Hruschka et al., 2005). The Bonferroni method was applied to account for 558 

multiple testing (+ = 0.05). 559 
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  695 



Figure legends 696 

Fig 1. Experimental Design for Partitioning Variation. Laboratory parasite strains 697 

HB3 and Dd2 were cloned to obtain four 1st round clones. One of these 1st round 698 

clones was further sub-cloned to obtain four 2nd round clones. HB3, Dd2 and 1st 699 

round clones were cultured twice to produce date replicated environmental batches. 700 

All 2nd round clones and biological replicates (*, n = 3) were cultured once during the 701 

second environmental batch. Different sources of variation can be assessed with the 702 

study design including environment batch, genotype, and clone-based variation as 703 

indicated by brackets. The final data set included 38 parasite lines as follows: a total 704 

of 20 HB3 cultures; a total of 18 Dd2 cultures; 10 cultures from 03/13; and 28 705 

cultures from 07/14.  706 

Fig 2. Correlations to reference lifecycle time points confirms parasite developmental stages. 707 

Whole genome normalized transcription abundance values for each sample (y-axis) were 708 

correlated to hourly transcription profiles of the community standard 3D7 parasite strain (x-axis). 709 

Color ramp represents correlation values by sample with highest values in red and lowest in 710 

green. The hours post invasion (hpi) value corresponding to the highest correlation value for 711 

each sample was recorded and used to determine stage-based variation in transcription among 712 

the samples.  713 

Fig 3. Partitioning of gene expression variation using a mixed effects model. Total variance in 714 

expression of genes PF3D7_0831700 (A–E) and PF3D7_1415800 (F–J) were sequentially 715 

partitioned (variation is removed stepwise) among identified sources. A and F: All variation is 716 

exhibited in the first panels. B and G: Stage-based variation is removed first and has little impact 717 



on the total variation for these two genes. More variation between Dd2 and HB3 is evidenced in 718 

PF3D7_0831700 (B) by the difference in residuals between clustering points by genotype. C and 719 

H: After accounting for genotype, the scale of the residuals (unaccounted for expression 720 

variation) among the samples was significantly reduced in PF3D7_0831700 (C), but not in 721 

PF3D7_1415800 (H) in which a broad range of residuals still exists for both HB3 and Dd2. D 722 

and I: Removing genotype and environmental batch -based variation did not alter the overall 723 

residual variation for PF3D7_0831700 (D), but the range of residuals was significantly narrower 724 

for PF3D7_1415800 (I). E and J: Removing genotype, environmental batch, and clone-based 725 

variation did not significantly alter the final range in the residuals and the remaining variation 726 

among samples in panels (E) and (J) resulted from (unaccounted for) stochastic noise. Symbols 727 

indicate different samples: black circles for parental line, different colored circles for 1st round 728 

clones (filled for batch 1, outlined for batch 2), 2nd round clones are all red outlines with different 729 

shape for each unique clone.  Residuals contain all total gene expression variation, across 730 

genotype, environmental batch, and clone. 731 

Fig 4. Significant transcriptional variation across all genes was observed for all the biological 732 

sources identified. A: The full multi-level mixed effects model partitioned the total variance for 733 

all 5540 genes and 100 noncoding RNAs among stage, genotype, environmental batch, and clone 734 

(Equation 9). B: For the 646 genes with significant variance, effect size for each source was also 735 

calculated. Each data point represents the transcriptional variance from one gene among all 736 

samples based on source. All genes are included for each source of variation. Boxes show inter-737 

quartile distance (IQD) with a line centered on median values. Whiskers extend to 1.5 IQD. 738 

Genes with highly significant amounts of variance by source are represented as outlier points. 739 



Fig 5. Transcripts largely exhibited significant variation for only once source. A total 740 

of 646 genes (y-axis) had significant variation based on one of the identified sources. 741 

For these genes most had significant levels of variation based on only a single source 742 

(yellow, P < 0.05, Bonferroni adjusted). Hierarchical clustering of significance values 743 

for each source of variation demonstrated that most (472) of these genes varied based 744 

on environmental batch, with another 171 varying for genotype, and 12 for clone. 745 

Only nine genes were significant for multiple sources, seven for genotype and 746 

environmental batch, and two for genotype and clone. Pairing the effect size directly 747 

with the total variance and significance demonstrates that even genes with low overall 748 

transcription variance can have significant variation due to a single source.  749 
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