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Abstract 

The Clinical Laboratory Improvement Amendments (CLIA) of 1988 requires that pharmacogenetic 

genotyping methods need to be established according to technical standards and laboratory practice 

guidelines before testing can be offered to patients. Testing methods for variants in ABCB1, CBR3, 

COMT, CYP3A7, C8ORF34, FCGR2A, FCGR3A, HAS3, NT5C2, NUDT15, SBF2, SEMA3C, SLC16A5, 

SLC28A3, SOD2, TLR4, and TPMT were validated in a CLIA-accredited laboratory. As no known 

reference materials were available, DNA samples that were from Coriell Cell Repositories (Camden, NJ) 

were used for the analytical validation studies. Pharmacogenetic testing methods developed here were 

shown to be accurate and 100% analytically sensitive and specific. Other CLIA-accredited laboratories 

interested in offering pharmacogenetic testing for these genetic variants, related to genotype-guided 

therapy for oncology, could use these publicly available samples as reference materials when developing 

and validating new genetic tests or refining current assays. 
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Introduction 

Genetic variants exist in genes coding for enzymes that are targets of oncology medications or responsible 

for their metabolism and transport. Pharmacogenetic tests are used to assess whether an individual has the 

variant allele for these known genetic changes and provide information on risk of toxicity or inefficacy to 

assist a patient’s medical care team in developing therapeutic strategies. For example, the cytotoxic agent 

5-fluorouracil undergoes fluoropyrimidine catabolism facilitated by dihydropyrimidine dehydrogenase 

(DPD). Individuals with reduced- or no-function variants in the DPYD gene (codes for DPD) have 

reduced activity of DPD, reduced 5-fluorouracil clearance, increased half-life and profound dose-related 

toxicities (eg, mucositis, diarrhea, neutropenia, and neurotoxicity). Treatment outcomes can be improved 

by testing for the DPYD variants and then following recommendations according to the Clinical 

Pharmacogenetics Implementation Consortium (CPIC, https://cpicpgx.org/, last accessed on 29 October 

2018) guidelines which suggest a reduction in the dose by 25% to 50% or avoiding 5-fluorouracil 

depending on the specific DPYD genetic variants present 1. Pharmacogenetic tests can only be used to 

improve patient care if the test is analytically and clinically valid. 

 

The U.S. Food and Drug Administration (FDA) includes pharmacogenetic test information in drug labels 

for several approved oncology medications, including belinostat (UGT1A1), irinotecan (UGT1A1), 

nilotinib (UGT1A1), pazopanib (UGT1A1 and HLA-B), capecitabine (DPYD), cisplatin (TPMT), 

mercaptopurine (TPMT), and thioguanine (TPMT). The suggestion that patients should be tested for 

genetic variants in the genes included in drug labels results in a need for more clinical laboratories with 

the ability to validate and perform pharmacogenetic testing. The Clinical Laboratory Improvement 

Amendments (CLIA) of 1988 were developed to regulate all facilities or sites in the United States that test 

human specimens for health assessment or to diagnose, prevent, or treat disease. Pharmacogenetic tests 

need to be established according to the technical standards and laboratory practice guidelines required by 

CLIA before testing can be offered to patients. 
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To achieve regulatory requirements and meet best practice standards, the testing laboratories will often 

use reference materials for assay development and validation, quality control, and proficiency testing. 

Genomic DNA samples from cell lines or remaining de-identified patient material are regularly used to 

develop and validate assays. The Centers for Disease Control and Prevention (CDC) established the 

Genetic Testing Reference Material Coordination (GeT-RM) Program, in 2010, to address the need for 

characterized genomic DNA reference materials. Several DNA samples from the Coriell Cell 

Repositories (Camden, NJ) have been tested for genetic variants in five commonly tested genes: CYP2D6, 

CYP2C19, CYP2C9, VKORC1, and UGT1A1 2, 3. As more genetic variants are established as markers of 

toxicity or inefficacy to cytotoxic agents, more pharmacogenetic testing methods can be validated to offer 

testing to patients with cancer. This study provides the rationale for chosen genes and variants as well as 

the analytical validation of genotyping methods for pharmacogenetic variants. For analytical validation, 

approximately 200 Coriell DNA samples for the variants of which methods were being validated were 

screened and Sanger sequencing used as an orthogonal method on a subset of samples both positive and 

negative for the variants of interest. All of the genes included in the analytical validation are involved in 

metabolism and transport of medicines (ABCB1, CBR3, CYP3A7, SLC16A5, SLC28A3, TPMT, NT5C2, 

NUDT15), or are targets of medications (FCGR2A, FCGR3A), or have an unclear role (COMT, 

C8ORF34, HAS3, SBF2, SEMA3C, SOD2, TLR4), in a CLIA-accredited laboratory, related to genotype-

guided therapy for oncology. 

 

Materials and Methods 

Selection of variants 

Oncology pharmacogenetic literature was reviewed to select 27 clinically-relevant genetic variants in 17 

genes that have been associated with inter-individual variability in efficacy or toxicity of cytotoxic agents. 

Genetic variants in ABCB1 were selected because ABCB1 codes for the drug transporter P-glycoprotein 

and these variants are associated with variability in achieving complete control of chemotherapy-induced 

nausea and vomiting when using ondansetron 4-6. The CBR3 gene encodes for a carbonyl reductase which 
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is involved in metabolism of anthracyclines. The selected variant is associated with increased risk of 

anthracycline-induced cardiomyopathy in pediatric patients 7-9. Similarly, the HAS3 and SLC28A3 

variants were included for their role in risk of anthracycline-induced cardiomyopathy 10-16. Although 

TPMT is involved in metabolism of thiopurines, the particular variant included in this study is associated 

with increased risk of cisplatin-induced hearing impairment. Similarly, the COMT genetic variants were 

included in this study based on studies reporting the variants play a role in cisplatin-induced hearing 

impairment in pediatric patients with medulloblastoma, neuroblastoma, or osteosarcoma 17-22. Like 

SLC28A3, SLC16A5 codes for a protein that is a member of the solute carrier transporter superfamily. In a 

recent in vitro study, cisplatin induced expression of SLC16A5 in a dose-dependent manner. The selected 

SLC16A5 variant was identified as a marker of hearing loss in a group of testicular cancer patients treated 

with cisplatin-containing chemotherapy 23. Many clinically used medications are metabolized by CYP3A 

enzymes including CYP3A7 which is expressed in a fraction of adult human livers. The CYP3A7 *1C 

allele is associated with lower urinary unconjugated estrogen metabolite levels and increased risk of 

mortality among individuals with breast cancer treated with medicines that are CYP3A substrates 24, 25. A 

genome-wide association study among Korean individuals with advanced non–small-cell lung cancer 

receiving irinotecan plus cisplatin reported associations between the SEMA3C variants and increased risk 

of grade 4 neutropenia and the C8orf34 variant and increased risk of grade 3 diarrhea 26. Genetic variants 

in FCGR2A and FCGR3A were included because these genes code for fragment C receptor subtypes that 

are targets for trastuzumab or rituximab binding. The variants are associated with altered risk of disease 

progression and progression-free survival 27-35. The NT5C2 gene codes for an enzyme involved in 

dephosphorylation of monophosphorylated gemcitabine and the particular variant included is associated 

with decreased clearance of intravenous gemcitabine 36, 37. NUDT15 was selected as it is important in 

metabolism of thiopurines and variants in NUDT15 are associated with increased risk of thiopurine-

induced toxicity. The relationship between the function of SBF2 and taxanes is unknown, yet five variants 

have been associated with increased risk of taxane-induced peripheral neuropathy in a group of African-

Americans 38. The protein coded for by SOD2 is a manganese superoxide dismutase that acts as a 
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mitochondrial antioxidant enzyme by endogenously converting superoxide into oxygen and hydrogen 

peroxide. The SOD2 variant selected were reported to affect enzyme function and increase risk of 

asparaginase-induced hepatotoxicity. TLR4 is a member of the Toll-like receptor family which plays a 

role in activation of innate immunity. Individuals with the selected TLR4 variant were more likely to 

experience methotrexate-induced gastrointestinal, liver, pneumonitis, and skin and mucosal adverse 

events 39. Table 1 summarizes the risk genotypes for each genetic variant related to a specific medication. 

Currently no clinical guidelines are available to recommend dose adjustment for these selected genetic 

variants. 

 

Samples 

189 existing reference DNA samples in the laboratory obtained from Coriell Cell Repository (Camden, 

New Jersey) 2, 3 were used for analytical validation (Supplemental Table S1). 

 

Taqman genotyping for selected variants 

Commercially available genotyping assays and reagents were used for each variant. DNA was amplified 

by real time PCR on the LifeTech QuantStudio 12K Flex (software v1.2.2; Grand Island, NY) and 

subjected to Taqman allelic discrimination using commercially available LifeTech (Grand Island, New 

York) reagents in a custom designed open array. The assay identification numbers are shown in Table 2. 

 

Primer design and Sanger sequencing of samples for accuracy 

Primers for each genetic variant were designed specific to the gene of interest (by aligning the gene 

sequence with that of genes with similar sequences to select a region that is unique to the gene of 

interest). The following tools were used for primer design: Primer 3 version 2004 which was developed 

by Rozen and Skaletsky in 2000 40 (http://bioinfo.ut.ee/primer3-0.4.0/, last accessed on 29 October 2018), 

NCBI Primer-BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/, last accessed on 29 October 

2018), and IDT OligoAnalyzer from Integrated DNA Technologies, Inc. (Coralville, IA). Integrated DNA 
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Technologies, Inc. performed synthesis of the primers. Primer sequences for each genetic variant are 

provided in Table 3 with PCR amplification conditions.41,42 

 

PCR amplification was performed using the following conditions: initial denaturation at 98 ºC for 30 

seconds, followed by 35 cycles of denaturation at 98 ºC for 10 seconds, annealing at the specific 

annealing temperature provided in Table 3 for 10 seconds, primer extension at 72 ºC for 30 seconds, and 

final extension at 72 ºC for 5 minutes. A “MyCycler Thermal cycler” (Bio-Rad, Hercules) was used and 

the PCR reaction contained the following reagents: 10ng genomic DNA, 1X Platinum SuperFi PCR 

Master Mix (Thermo Fisher Scientific, Massachusetts), and 0.112µM of the forward and reverse primers 

(Integrated DNA Technologies, Inc.). 

 

Purification of the PCR amplicons were performed using the MinElute PCR Purification Kit (QIAGEN, 

Hilden, Germany). The protocol was adjusted by performing elution twice in 20µL of DNase-free water. 

Purified samples were mixed with 0.25µM of the primer used for sequencing and submitted to ACGT, 

Inc. (Wheeling, IL) for Sanger sequencing. Analysis of the sequences was performed using BioEdit 

biological sequence alignment editor (v7.0.5, Ibis Therapeutics, Carlsbad, CA). 

 

Results 

All of the variants were detected using the Taqman reagents. Both the amplification traces and allelic 

discrimination plots showed good allele separation 

(http://tools.thermofisher.com/content/sfs/manuals/cms_042798.pdf, last accessed 11/21/2018). The 

sequencing results were compared to the genotyping results and were 100% concordant (Table 2). The 

number of variant alleles and non-variant (ie, wild type) alleles detected by sequencing were evaluated to 

calculate the analytical sensitivity and specificity. The analytical sensitivity was 100% for the detection of 

variant alleles, with no reported false negatives. The analytical specificity was 100% for detection of non-
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variant alleles, with no false positive results reported (confidence intervals varied based on samples tested 

and allele frequency, Table 2). 

 

DNA samples obtained from Coriell Cell Biorepositories were used to assess intra- and inter-assay 

variation. Intra- (within) assay variation studies showed that all three replicates of the samples analyzed in 

the same run, had concordant results. The inter- (between) assay variation study showed that the samples 

consistently got the same result across three separate runs. All assays were robust and consistent 

genotyping results were obtained using two different instruments on different days and using input DNA 

within a concentration range of 15.4 to 50.8ng/µL. 

 

A total of 189 DNA samples from Coriell Cell Repositories were genotyped successfully, with the results 

provided in Supplemental Table S1. Sanger sequencing was used as an orthogonal method to confirm the 

accuracy of the array genotyping results for a majority of the 27 variants, except for SBF2 rs146987383 

and SBF2 rs149501654. All 189 Coriell reference materials were negative for both the SBF2 

rs146987383 and rs149501654 variants and known reference materials were obtained from a research 

laboratory. The number of samples, from the Coriell sample set, carrying a variant allele for each of the 

27 genetic variants is summarized in Table 4 to show how many samples in this data set had a variant 

allele. The variant alleles for CYP3A7 rs45446698, NUDT15 rs116855232, NUDT15 rs186364891, SBF2 

rs141368249, and SBF2 rs117957652 are rare and only observed in five, six, one, five, and three samples, 

respectively (Table 4).  

 

Discussion 

Pharmacogenomic testing methods can be complex to create and complicated by gene sequence similarity 

between members of the same gene family. The benefit of publishing our validated genotyping methods is 

that other CLIA-accredited laboratories can access this information and confidently establish these 

methods knowing that the assays were robust, accurate, and had 100% analytical sensitivity and 
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specificity. Furthermore, identification of samples with the variant allele among genomic DNA samples 

from the Coriell Cell Biorepositories is useful for other clinical laboratories. These publicly available 

DNA samples and associated data can be used when developing and validating new genetic tests or 

refining current assays. The 1000 Genomes Project 43 or ExAC Project 44 may be used as another resource 

for identifying reference materials. Having validated methods and positive samples will improve 

standardization of pharmacogenomic testing across clinical laboratories. 

 

The goal of analytical validation in clinical laboratories is to determine how well the test system can 

detect what it is designed to detect, ie, defined genetic variants from genomic DNA. Analytical validation 

can be challenging when there is a lack of reference materials for the defined variants, or lack of “truth”. 

We chose the approach of screening approximately 200 Coriell DNA samples for the variants that were 

being validated and using Sanger sequencing as an orthogonal method on a subset of both positive and 

negative samples to determine truth. This approach works well when variants are rather common, greater 

than 0.01 frequency. For rarer alleles, a different approach was chosen.  A research laboratory was 

contacted and DNA samples requested for validation studies.   

 

A novel discovery during the validation studies was that several of the variants were in cis. Several DNA 

samples were positive for more than two variants in the same gene (eg, ABCB1, COMT, SBF2, SEMA3C, 

SLC28A3). In clinical testing some examples include CFTR (p.R117H and c.1210−12[5][7][9] ) 45, 

CYP2D6 46, and MTHFR 47, cis variants have been well-documented as both impacting clinical phenotype 

and as a confounder for clinical interpretation.. If any of these markers are used in risk models for 

toxicity, these risk models may need to be revised. 

 

Establishing standardized methods is challenging, but once these genotyping methods are validated 

another difficulty is interpretation and implementation of the test results. Interpretation of 

pharmacogenomic test results for patients with cancer is particularly complex because both germline and 
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somatic DNA alterations could inform therapy: somatic mutations can be used to select a targeted 

therapeutic agent whereas germline genetic variation can highlight possible risk of toxicity or inefficacy 

of therapy. An approach, for clinical pharmacogenomic testing in oncology is to perform testing on 

cancer patients as part of precision genomics initiatives/clinics and then discuss test results during 

molecular tumor boards. Molecular tumor boards are forums through which interprofessional teams 

discuss and interpret genomic test results and make treatment recommendations. If a clinical genetics 

testing laboratory with the ability to perform pharmacogenomic tests is aligned with a molecular tumor 

board, testing can be performed and results can be used to assess a cancer patients’ risk of toxicity or 

treatment inefficacy when decisions are made about which cytotoxic agents will be preferred. If a clinical 

testing laboratory is in proximity and its services are integrated into a molecular tumor board, there may 

be added benefits such as shorter turn-around-time and, in some cases, genotyping prior to therapy 

selection instead of reactive genotyping. This approach along with the provided pharmacogenetic testing 

methods for genetic variants in ABCB1, CBR3, COMT, CYP3A7, C8ORF34, FCGR2A, FCGR3A, HAS3, 

NT5C2, NUDT15, SBF2, SEMA3C, SLC16A5, SLC28A3, SOD2, TLR4, and TPMT have the potential to 

better understand a patient’s risk of toxicity or treatment inefficacy for oncology medications such as 

taxanes, anthracyclines, platinum agents, trastuzumab, rituximab, and 5-hydroxytriptamine-3 receptor 

antagonists. 
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Table 1: Selected germline genetic variants and genotypes related to oncology therapy. 

Gene and rs 
number Genotypes Description and References Relevant Population 

PharmGKB 
Level of 
Evidence† 

CPIC Level 
of 
Evidence† 

Medications 
with suggested 
testing in FDA 
label 

ABCB1 rs1045642 T/T More likely to experience efficacy and 
achieve complete control with ondansetron 
treatment in postoperative or 
chemotherapy-induced nausea and 
vomiting 4-6 

 

2A C/D  
ABCB1 rs1128503 T/T  

ABCB1 rs2032582 T/T 
2A 

CBR3 rs1056892 G/G 

Increased risk of anthracycline-induced 
cardiomyopathy or reduced ejection 
fraction if cumulative anthracycline 
exposure is 1 to 250mg/m2 7-9 

Pediatric - 
Caucasian/European 

2B D  

COMT rs4646316 
and rs9332377 

rs4646316T/T 
and 
rs9332377C/C 

Decreased risk of cisplatin-induced 
hearing impairment 17-22 

Pediatric - 
Caucasian/European 

3 C/D  

CYP3A7 
rs45446698 (*1C) 

*1/*1  and *1/*1C 

Lower urinary unconjugated estrogen 
metabolite levels and increased risk of 
mortality if treated with CYP3A substrates 
24, 25 

Caucasian/European breast 
and lung cancer patients 

   

C8ORF34 
rs1517114 

G/C and C/C 
Increased risk of irinotecan-induced grade 
3 diarrhea 

Asian advanced non–small-
cell lung cancer patients 

2B D  

FCGR2A 
rs1801274 

G/G and A/G 

Increased risk of stable or progressive 
disease and more likely to have shorter 
progression-free survival following 
treatment of HER2 + breast cancer with 
trastuzumab-based therapy 27-29 
Increased risk of stable or progressive 
disease and more likely to have shorter 
progression-free survival following 
treatment of lymphoma with rituximab-
based therapy 30 

 

2B   

FCGR3A 
rs396991 

C/C 

Decreased risk of stable or progressive 
disease and more likely to have longer 
progression-free survival following 
treatment of HER2+ metastatic breast 
cancer with trastuzumab-based therapy 27-

29 
Decreased risk of stable or progressive 
disease and more likely to have longer 
progression-free survival following 
treatment of lymphoma with rituximab-
based therapy 30-35 

 

2B D  

HAS3 rs2232228 A/A and A/G 

Increased risk of anthracycline-induced 
cardiomyopathy or reduced ejection 
fraction if cumulative anthracycline 
exposure is 1 to 450mg/m2 10 

Pediatric - 
Caucasian/European 

2B D  

NT5C2 
rs11598702 

A/A 
Decreased clearance of intravenous 
gemcitabine 36, 37 

Caucasian solid tumor 
patients 

2B D  
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NUDT15 
rs116855232 and 
rs186364861 (*3 
and *5) 

*1/*3 , *1/*5 , 
*3/*3 , *5/*5 , and 
*3/*5  

Increased risk of thiopurine-induced 
toxicity, including early leukopenia, 
neutropenia, alopecia totalis, 
pancytopenia, and treatment 
discontinuation 

 

1B A/B Mercaptopurine 
and 
Thioguanine 

SBF2 rs7102464 T/T and C/T 

Increased risk of taxane-induced 
peripheral neuropathy 38 

African American 

   
SBF2 
rs146987383 

C/C and G/C 

SBF2 
rs141368249 

A/A and G/A 

SBF2 
rs117957652 

C/C and G/C 

SBF2 
rs149501654 

G/G and C/G 

SEMA3C 
rs7779029 

C/C and T/C 
Increased risk of irinotecan-induced severe 
neutropenia 26 

Advanced non–small-cell 
lung cancer patients 

2B D  

SEMA3C 
rs11979430 

T/T and C/T 
 

SLC16A5 
rs4788863 

T/T and T/C 
Decreased risk of cisplatin-induced 
hearing impairment 

Caucasian/European 
testicular cancer patients 

3   

SLC28A3 
rs885004 

A/A and G/A Decreased risk of anthracycline-induced 
cardiomyopathy or reduced ejection 
fraction 11-16 

Pediatric - 
Caucasian/European 

2B D  

SLC28A3 
rs7853758 

A/A and G/A 

SOD2 rs4880 C/C 
Increased risk of asparaginase-induced 
hepatotoxicity 

Hispanic or 
Caucasian/European acute 
lymphoblastic leukemia 
patients 

3 D  

TLR4 rs4986790 G/G and A/G 

Increased risk of methotrexate-induced 
gastrointestinal (nausea, vomiting, diarrhea 
and constipation), liver (elevated liver 
enzymes), pneumonitis, and skin and 
mucosal adverse events 39 

 

3   

TPMT rs12201199 T/A and A/A 
Increased risk of cisplatin-induced hearing 
impairment 

Pediatric – 
Caucasian/European 

3  Cisplatin 

†Several of these genetic variants have not been reviewed by PharmGKB or CPIC and have not been assigned a level of evidence.
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Table 2: Assay results: intra- and inter-assay concordance, accuracy, precision, sensitivity, and specificity. 
Gene rs number TaqMan Assay ID Intra assay 

concordance 
Inter assay 
concordance 

Verified by 
Sanger 
sequencing 

Accuracy Robustness† Analytical 
sensitivity 

Analytical 
specificity 

ABCB1 rs1045642 C___7586657_20 100% (12 
samples in 
triplicate) 

100% (18 
samples in 
triplicate) 

yes 100% (12 samples) yes 100% (95% 
CI; 93-100) 

100% (95% 
CI; 83-100) rs1128503 C___7586662_10 

rs2032582 C_11711720C_30 and 
C_11711720D_40 

CBR3 rs1056892 C___9483603_10 100% (14 
samples in 
triplicate) 

100% (18 
samples in 
triplicate) 

yes 100% (11 samples) yes 100% (95% 
CI; 68-100) 

100% (95% 
CI; 78-100) 

COMT rs4646316 C__29193982_10 100% (14 
samples in 
triplicate) 

100% (18 
samples in 
triplicate) 

yes 100% (11 samples) yes 100% (95% 
CI; 77-100) 

100% (95% 
CI; 89-100) rs9332377 C__29614343_10 

 
CYP3A7 rs45446698 

(*1C) 
C__30634320_10 100% (14 

samples in 
triplicate) 

100% (18 
samples in 
triplicate) 

no 100% (96 samples) yes 100% (95% 
CI; 51-100) 

100% (95% 
CI; 98-100) 

C8orf34 rs1517114 C___8341581_20 100% (7 samples 
in triplicate) 

100% (7 samples 
in triplicate) 

yes 100% (16 samples) yes 100% (95% 
CI; 86-100) 

100% (95% 
CI; 68-100) 

FCGR2A rs1801274 C___9077561_20 100% (14 
samples in 
triplicate) 

100% (18 
samples in 
triplicate) 

yes 100% (9 samples) yes 100% (95% 
CI; 70-100) 

100% (95% 
CI; 70-100) 

FCGR3A rs396991 C__25815666_10 100% (14 
samples in 
triplicate) 

100% (18 
samples in 
triplicate) 

yes 100% (10 samples) yes 100% (95% 
CI; 72-100) 

100% (95% 
CI; 90-100) 

HAS3 rs2232228 C___3283947_1_ 100% (14 
samples in 
triplicate) 

100% (18 
samples in 
triplicate) 

yes 100% (12 samples) yes 100% (95% 
CI; 68-100) 

100% (95% 
CI; 81-100) 

NT5C2 rs11598702 C__11196884_20 100% (7 samples 
in triplicate) 

100% (7 samples 
in triplicate) 

yes 100% (16 samples) yes 100% (95% 
CI; 61-100) 

100% (95% 
CI; 87-100) 

NUDT15 rs116855232 
(*3) 

C_154823200_10 100% (7 samples 
in triplicate) 

100% (7 samples 
in triplicate) 

yes 100% (24 samples) yes 100% (95% 
CI; 65-100) 

100% (95% 
CI; 96-100) 

rs186364861 
(*5) 

C_181955856_10 

SBF2 rs7102464 C__29019176_10 100% (14 
samples in 
triplicate) 

100% (18 
samples in 
triplicate) 

yes 100% (12 samples and an 
additional 9 samples from 
another laboratory) 

yes 100% (95% 
CI; 81-100) 

100% (95% 
CI; 98-100) rs146987383 C_161447122_10 

rs141368249 C_161190467_10 
rs117957652 C_152435684_10 
rs149501654 C_161562183_10 

SEMA3C rs7779029 C____334680_10 100% (14 
samples in 
triplicate) 

100% (18 
samples in 
triplicate) 

yes 100% (12 samples) yes 100% (95% 
CI; 78-100) 

100% (95% 
CI; 89-100) rs11979430 C___2621121_10 

SLC16A5 rs4788863 C____156080_10 100% (7 samples 
in triplicate) 

100% (7 samples 
in triplicate) 

yes 100% (16 samples) yes 100% (95% 
CI; 85-100) 

100% (95% 
CI; 72-100) 

SLC28A3 rs885004 C___2752627_10 100% (14 
samples in 
triplicate) 

100% (18 
samples in 
triplicate) 

yes 100% (11 samples) yes 100% (95% 
CI; 70-100) 

100% (95% 
CI; 90-100) rs7853758 C___1820227_30 

SOD2 rs4880 C___8709053_10 100% (7 samples 
in triplicate) 

100% (7 samples 
in triplicate) 

yes 100% (8 samples) yes 100% (95% 
CI; 44-100) 

100% (95% 
CI; 77-100) 

TLR4 rs4986790 C__11722238_20 100% (14 100% (18 yes 100% (12 samples) yes 100% (95% 100% (95% 
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samples in 
triplicate) 

samples in 
triplicate) 

CI; 21-100) CI; 86-100) 

TPMT rs12201199 C__31923406_10 100% (7 samples 
in triplicate) 

100% (7 samples 
in triplicate) 

yes 100% (16 samples) yes 100% (95% 
CI; 70-100) 

100% (95% 
CI; 86-100) 

†Robustness means obtaining the same genotyping result using two different instruments on different days and using input DNA within a concentration range of 
15.4 to 50.8ng/µL
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Table 3: Primer sequences and PCR amplification conditions for validated genetic variants before performing verification by Sanger sequencing. 
Gene rs number HGVS 

nomenclature 
Sequence 
accession 
number 

Forward primer sequence Reverse primer sequence PCR 
annealing 
temperatur
e (ºC) 

PCR 
product/amplico
n length (bp) 

ABCB1 rs1045642 c.3435T>C or 
p.Ile1145= 

NM_000927.4 or 
NP_000918.2 

5ꞌ-ACTCTTGTTTTCAGCTGCTTG-3ꞌ 
41 

5ꞌ-
AGAGACTTACATTAGGCAGTGACTC-
3ꞌ 41 

63 231 

rs1128503 c.1236T>C or 
p.Gly412= 

5ꞌ-
TGTGTCTGTGAATTGCCTTGAAG-3ꞌ 
42 

5ꞌ-CCTCTGCATCAGCTGGACTGT-3ꞌ 42 63 149 

rs2032582 c.2677T>G/A or 
p.Ser893Ala/Thr 

5ꞌ-
ATGGTTGGCAACTAACACTGTTA-
3ꞌ 42 

5ꞌ-
AGCAGTAGGGAGTAACAAAATAAC
A-3ꞌ 42 

63 208 

CBR3 rs1056892 c.730G>A or 
p.Val244Met 

NM_001236.3 or 
NP_001227.1 

5ꞌ-CCAGGACCAGTGAAGACAGA-3ꞌ 5ꞌ-CCGAAGCAGACGTTTACCAG-3ꞌ 63 166 

COMT rs4646316 c.615+310C>T NM_000754.3 5ꞌ-ACACGCTTCTCTTGGAGGTG-3ꞌ 5ꞌ-CTGTCTAGCCTCACTCGGG-3ꞌ 63 519 
rs9332377 c.616-367C>A/T 5ꞌ-GCTTGTTGATGGGAGGTCTG-3ꞌ 5ꞌ-TCCCTTAGAACAGCATGTGG-3ꞌ 61 217 

C8ORF3
4 

rs1517114 c.736+8162C>G/T/
A 

NM_052958.2 5ꞌ-CTGTGCTTTCTCGTCTTCAG-3ꞌ 5ꞌ-CAGCCTGGAACCTACCCTTG-3ꞌ 58 238 

FCGR2A rs1801274 c.500A>G or 
p.His167Arg 

NM_001136219.
1 or 
NP_001129691.1 

5ꞌ-CAAGCCTCTGGTCAAGGTCA-3ꞌ 5ꞌ-AAGGATTCCCCTTAGCCCCT-3ꞌ 58 663 

FCGR3A rs396991 c.841T>C/G or 
p.Phe281Leu/Val 

NM_000569.7: 
or NP_000560.6 

5ꞌ-
CACATATTTACAGAATGGCAAAG
G-3ꞌ 

5ꞌ-GATTCTGGAGGCTGGTGCTACA-3ꞌ 58 969 

HAS3 rs2232228 c.279A>G or 
p.Ala93= 

NM_001199280.
1 or 
NP_001186209.1 

5ꞌ-GTGACGGGCTACCAGTTCAT-3ꞌ 5ꞌ-CACAACCCAAGGGACCTAGA-3ꞌ 58 654 

NT5C2 rs11598702 c.175+1178A>G/C NM_012229.4 5ꞌ-GACGGGTTTATAGGTGCAGC-3ꞌ 5ꞌ-TCAATGACTTCTTGCCCAGT-3ꞌ 58 222 
NUDT15 rs11685523

2 (*3) 
c.415C>T or 
p.Arg139Cys 

NM_018283.3 or 
NP_060753.1 

5ꞌ-GCCTTTGTAAACTGGGCTTC-3ꞌ 5ꞌ-CAAATCTTCTCGGCCACCTA-3ꞌ 58 411 

rs18636486
1 (*5) 

c.52G>A or 
p.Val18Ile 

5ꞌ-CATTCCCCAACCTGATAGCC-3ꞌ 5ꞌ-CAACCGAGCCTTTCCTCTTC-3ꞌ 58 296 

SBF2 rs7102464 c.2035G>A or 
p.Glu679Lys 

NM_030962.3 or 
NP_112224.1 

5ꞌ-ACAGAAACTTGCCCCTGGAG-3ꞌ 5ꞌ-ACCCAAATACACTGGCAGGA-3ꞌ 63 289 

rs14698738
3 

c.2050C>G or 
p.Leu684Val 

5ꞌ-ACAGAAACTTGCCCCTGGAG-3ꞌ 5ꞌ-ACCCAAATACACTGGCAGGA-3ꞌ 63 289 

rs14136824
9 

c.2081C>T or 
p.Ala694Val 

5ꞌ-ACAGAAACTTGCCCCTGGAG-3ꞌ 5ꞌ-ACCCAAATACACTGGCAGGA-3ꞌ 63 289 

rs11795765
2 

c.3292C>G/T or 
p.Leu1098Val/= 

5ꞌ-
CCTGTCTTGGTGTAAGAGTCTTCT-
3ꞌ 

5ꞌ-ACCTCTTTTTGGAGCCCACT-3ꞌ 63 843 

rs14950165
4 

c.4111G>C or 
p.Val1371Leu 

5ꞌ-TCTTCATCCGCAGAACTTCA-3ꞌ 5ꞌ-AGTGTGCCTTTGGTGGGTAG-3ꞌ 63 649 

SEMA3C rs7779029 c.103+13883A>G NM_006379.3 5ꞌ-GGCTTAGGTCTCTGCCCTTT-3ꞌ 5ꞌ-GTTCCCATTTCCAGGCTCCA-3ꞌ 58 200 
rs11979430 c.103+36739G>A 5ꞌ-GGAAAGGGCAGACTGTGGTA-3ꞌ 5ꞌ-ACCAAACCTCTTCAGGGTGA-3ꞌ 58 383 

SLC16A5 rs4788863 c.121T>C or 
p.Leu81= 

NM_004695.3 or 
NP_004686.1 

5ꞌ-AGGTCCCCCTGTTGACTTCT-3ꞌ 5ꞌ-TGAAATCTGGTGAAACCTTAGGA-
3ꞌ 

58 725 

SLC28A3 rs885004 c.862-360C>T NM_022127.2 5ꞌ-TGTGTCTGCCATCCAGTAGG-3ꞌ 5ꞌ-CCTGGTGCTAAAAAGACATGG-3ꞌ 58 161 
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rs7853758 c.1381C>T or 
p.Leu461= 

NM_022127.2 or 
NP_071410.1 

5ꞌ-CCCCTGACAACTCCTTGGTA-3ꞌ 5ꞌ-CAGGGGCGTGATGTGATTAT-3ꞌ 58 239 

SOD2 rs4880 c.47T>C or 
p.Val16Ala 

NM_000636.3 or 
NP_000627.2 

5ꞌ-CTGTGCTTTCTCGTCTTCAG-3ꞌ 5ꞌ-CAGCCTGGAACCTACCCTTG-3ꞌ 58 238 

TLR4 rs4986790 c.776A>G or 
p.Asp299Gly 

NM_003266.3 or 
NP_612564.1 

5ꞌ-AGTCCATCGTTTGGTTCTGG-3ꞌ 5ꞌ-TGCCATTGAAAGCAACTCTG-3ꞌ 58 635 

TPMT rs12201199 c.419+94T>A NM_000367.3 5ꞌ-GTTCTTCGGGGAACATTTCA-3ꞌ 5ꞌ-AAGTGATTGAGCCACAAGCC-3ꞌ 58 975 

Accession numbers are available from https://www.ncbi.nlm.nih.gov/snp, last accessed 2/1/2019. 
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Table 4: Genotype frequencies for validated genetic variants. 
Gene and rs number  HGVS nomenclature Genotype N Genotype frequencies 
ABCB1 rs1045642 c.3435T>C or p.Ile1145= T/T 34 0.18 

T/C 84 0.44 
C/C 71 0.38 

ABCB1 rs1128503 c.1236T>C or p.Gly412= T/T 28 0.15 
T/C 88 0.47 
C/C 73 0.39 

ABCB1 rs2032582 c.2677T>G/A or p.Ser893Ala/Thr T/T 33 0.17 
T/G 70 0.37 
G/G 86 0.46 

CBR3 rs1056892 c.730G>A or p.Val244Met G/G 65 0.34 
G/A 101 0.53 
A/A 23 0.12 

COMT rs4646316  c.615+310C>T C/C 117 0.62 
C/T 57 0.30 
T/T 15 0.08 

COMT rs9332377 c.616-367C>A/T C/C 125 0.66 
C/T 59 0.31 
T/T 5 0.03 

CYP3A7 rs45446698 (*1C) c.-232A>C A/A 184 0.97 
A/C 4 0.02 
C/C 1 0.01 

C8orf34 rs1517114 c.736+8162C>G/T/A C/C 22 0.12 
C/G 81 0.43 
G/G 86 0.46 

FCGR2A rs1801274 c.500A>G or p.His167Arg A/A 59 0.31 
A/G 94 0.50 
G/G 36 0.19 

FCGR3A rs396991 c.841T>C/G or p.Phe281Leu/Val T/T 78 0.41 
T/G 94 0.50 
G/G 17 0.09 

HAS3 rs2232228 c.279A>G or p.Ala93 A/A 81 0.43 
A/G 87 0.46 
G/G 21 0.11 

NT5C2 rs11598702 c.175+1178A>G/C A/A 102 0.54 
A/G 75 0.40 
G/G 12 0.06 

NUDT15 rs116855232 (*3) c.415C>T or p.Arg139Cys C/C 183 0.97 
C/T 6 0.03 
T/T 0 0.00 

NUDT15 rs186364861 (*5) c.52G>A or p.Val18Ile G/G 188 0.99 
G/A 1 0.01 
A/A 0 0.00 

SBF2 rs7102464 c.2035G>A or p.Glu679Lys G/G 168 0.89 
G/A 18 0.10 
A/A 3 0.01 

SBF2 rs146987383 c.2050C>G or p.Leu684Val C/C 0 0.00 
C/G 0 0.00 
G/G 189 1.00 

SBF2 rs141368249 c.2081C>T or p.Ala694Val C/C 4 0.02 
C/T 1 0.01 
T/T 184 0.97 

SBF2 rs117957652 c.3292C>G/T or p.Leu1098Val/= C/C 0 0.00 
C/G 3 0.02 
G/G 186 0.98 

SBF2 rs149501654 c.4111G>C or p.Val1371Leu G/G 0 0.00 
G/C 0 0.00 
C/C 189 1.00 

SEMA3C rs7779029 c.103+13883A>G A/A 134 0.71 
A/G 44 0.23 
G/G 11 0.06 

SEMA3C rs11979430 c.103+36739G>A G/G 143 0.76 
G/A 39 0.21 
A/A 7 0.03 

SLC16A5 rs4788863 c.121T>C or p.Leu81= T/T 24 0.13 
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T/C 71 0.38 
C/C 94 0.49 

SLC28A3 rs885004 c.862-360C>T C/C 143 0.76 
C/T 44 0.23 
T/T 2 0.01 

SLC28A3 rs7853758 c.1381C>T or p.Leu461= C/C 123 0.65 
C/T 56 0.30 
T/T 10 0.05 

SOD2 rs4880 c.47T>C or p.Val16Ala T/T 86 0.46 
T/C 62 0.33 
C/C 41 0.21 

TLR4 rs4986790 c.776A>G or p.Asp299Gly A/A 176 0.93 
A/G 13 0.07 
G/G 0 0.00 

TPMT rs12201199 c.419+94T>A T/T 18 0.10 
T/A 26 0.14 
A/A 143 0.76 

 


