Sieve estimation of a class of partially linear transformation models with interval-censored competing risks data

dc.contributor.authorLu, Xuewen
dc.contributor.authorWang, Yan
dc.contributor.authorBandyopadhyay, Dipankar
dc.contributor.authorBakoyannis, Giorgos
dc.contributor.departmentBiostatistics and Health Data Science, Richard M. Fairbanks School of Public Health
dc.date.accessioned2025-04-09T13:07:08Z
dc.date.available2025-04-09T13:07:08Z
dc.date.issued2023
dc.description.abstractIn this paper, we consider a class of partially linear transformation models with interval-censored competing risks data. Under a semiparametric generalized odds rate specification for the cause-specific cumulative incidence function, we obtain optimal estimators of the large number of parametric and nonparametric model components via maximizing the likelihood function over a joint B-spline and Bernstein polynomial spanned sieve space. Our specification considers a relatively simpler finite-dimensional parameter space, approximating the infinite-dimensional parameter space as n → ∞, thereby allowing us to study the almost sure consistency, and rate of convergence for all parameters, and the asymptotic distributions and efficiency of the finite-dimensional components. We study the finite sample performance of our method through simulation studies under a variety of scenarios. Furthermore, we illustrate our methodology via application to a dataset on HIV-infected individuals from sub-Saharan Africa.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationLu X, Wang Y, Bandyopadhyay D, Bakoyannis G. Sieve estimation of a class of partially linear transformation models with interval-censored competing risks data. Stat Sin. 2023;33(2):685-704. doi:10.5705/ss.202021.0051
dc.identifier.urihttps://hdl.handle.net/1805/46929
dc.language.isoen_US
dc.publisherAcademia Sinica
dc.relation.isversionof10.5705/ss.202021.0051
dc.relation.journalStatistica Sinica
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectBernstein polynomials
dc.subjectCompeting risks
dc.subjectCumulative incidence function
dc.subjectInterval censoring
dc.subjectPartially linear transformation model
dc.subjectSemiparametric efficiency
dc.titleSieve estimation of a class of partially linear transformation models with interval-censored competing risks data
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lu2023Sieve-AAM.pdf
Size:
441.7 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: