Role of RPL39 in Metaplastic Breast Cancer

dc.contributor.authorDave, Bhuvanesh
dc.contributor.authorGonzalez, Daniel D.
dc.contributor.authorLiu, Zhi-Bin
dc.contributor.authorLi, Xiaoxian
dc.contributor.authorWong, Helen
dc.contributor.authorGranados, Sergio
dc.contributor.authorEzzedine, Nadeer E.
dc.contributor.authorSieglaff, Douglas H.
dc.contributor.authorEnsor, Joe E.
dc.contributor.authorMiller, Kathy D.
dc.contributor.authorRadovich, Milan
dc.contributor.authorEterovic, Agda Karina
dc.contributor.authorGross, Steven S.
dc.contributor.authorElemento, Olivier
dc.contributor.authorMills, Gordon B.
dc.contributor.authorGilcrease, Michael Z.
dc.contributor.authorChang, Jenny C.
dc.contributor.departmentMedicine, School of Medicineen_US
dc.date.accessioned2018-02-01T21:03:40Z
dc.date.available2018-02-01T21:03:40Z
dc.date.issued2017
dc.description.abstractBackground: Metaplastic breast cancer is one of the most therapeutically challenging forms of breast cancer because of its highly heterogeneous and chemoresistant nature. We have previously demonstrated that ribosomal protein L39 (RPL39) and its gain-of-function mutation A14V have oncogenic activity in triple-negative breast cancer and this activity may be mediated through inducible nitric oxide synthase (iNOS). The function of RPL39 and A14V in other breast cancer subtypes is currently unknown. The objective of this study was to determine the role and mechanism of action of RPL39 in metaplastic breast cancer. Methods: Both competitive allele-specific and droplet digital polymerase chain reaction were used to determine the RPL39 A14V mutation rate in metaplastic breast cancer patient samples. The impact of RPL39 and iNOS expression on patient overall survival was estimated using the Kaplan-Meier method. Co-immunoprecipitation and immunoblot analyses were used for mechanistic evaluation of RPL39. Results: The RPL39 A14V mutation rate was 97.5% (39/40 tumor samples). High RPL39 (hazard ratio = 0.71, 95% confidence interval = 0.55 to 0.91, P = .006) and iNOS expression (P = .003) were associated with reduced patient overall survival. iNOS inhibition with the pan-NOS inhibitor NG-methyl-L-arginine acetate decreased in vitro proliferation and migration, in vivo tumor growth in both BCM-4664 and BCM-3807 patient-derived xenograft models (P = .04 and P = .02, respectively), and in vitro and in vivo chemoresistance. Mechanistically, RPL39 mediated its cancer-promoting actions through iNOS signaling, which was driven by the RNA editing enzyme adenosine deaminase acting on RNA 1. Conclusion: NOS inhibitors and RNA editing modulators may offer novel treatment options for metaplastic breast cancer.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationDave, B., Gonzalez, D. D., Liu, Z.-B., Li, X., Wong, H., Granados, S., … Chang, J. C. (2017). Role of RPL39 in Metaplastic Breast Cancer. JNCI: Journal of the National Cancer Institute, 109(6). https://doi.org/10.1093/jnci/djw292en_US
dc.identifier.urihttps://hdl.handle.net/1805/15132
dc.language.isoenen_US
dc.publisherOxforden_US
dc.relation.isversionof10.1093/jnci/djw292en_US
dc.relation.journalJNCI: Journal of the National Cancer Instituteen_US
dc.rightsAttribution-NonCommercial 3.0 United States
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/us
dc.sourcePublisheren_US
dc.subjectmutationen_US
dc.subjectnitric oxide synthaseen_US
dc.subjectmetaplastic carcinoma of breasten_US
dc.titleRole of RPL39 in Metaplastic Breast Canceren_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dave_2017_role.pdf
Size:
681.2 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: