Compensatory adaptation of parallel motor pathways promotes skilled forelimb recovery after spinal cord injury

Date
2024-11-13
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Skilled forelimb patterning is regulated by the corticospinal tract (CST) with support from brainstem regions. When the CST is lesioned, there is a loss of forelimb function; however, if indirect pathways remain intact, rehabilitative training can facilitate recovery. Following spinal cord injury, rehabilitation is thought to enhance the reorganization and plasticity of spared supraspinal-propriospinal circuits, aiding functional recovery. This study focused on the roles of cervical propriospinal interneurons (PNs) and rubrospinal neurons (RNs) in the recovery of reaching and grasping behaviors in rats with bilateral lesions of the CST and dorsal columns at C5. The lesions resulted in a 50% decrease in pellet retrieval, which normalized over four weeks of training. Silencing PNs or RNs after recovery resulted in reduced retrieval success. Notably, silencing both pathways corresponded to greater functional loss, underscoring their parallel contributions to recovery, alongside evidence of CST fiber sprouting in the spinal cord and red nucleus.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Sheikh IS, Keefe KM, Sterling NA, et al. Compensatory adaptation of parallel motor pathways promotes skilled forelimb recovery after spinal cord injury. iScience. 2024;27(12):111371. Published 2024 Nov 13. doi:10.1016/j.isci.2024.111371
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
iScience
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}