HMGB1 derived from lung epithelial cells after cobalt nanoparticle exposure promotes the activation of lung fibroblasts

Date
2024
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Taylor & Francis
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

We have previously demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused extensive interstitial fibrosis and inflammatory cell infiltration in mouse lungs. However, the underlying mechanisms of Nano-Co-induced pulmonary fibrosis remain unclear. In this study, we investigated the role of high-mobility group box 1 (HMGB1) in the epithelial cell-fibroblast crosstalk in Nano-Co-induced pulmonary fibrosis. Our results showed that Nano-Co exposure caused remarkable production and release of HMGB1, as well as nuclear accumulation of HIF-1α in human bronchial epithelial cells (BEAS-2B) in a dose- and a time-dependent manner. Pretreatment with CAY10585, an inhibitor against HIF-1α, significantly blocked the overexpression of HMGB1 in cell lysate and the release of HMGB1 in the supernatant of BEAS-2B cells induced by Nano-Co exposure, indicating that Nano-Co exposure induces HIF-1α-dependent HMGB1 overexpression and release. In addition, treatment of lung fibroblasts (MRC-5) with conditioned media from Nano-Co-exposed BEAS-2B cells caused increased RAGE expression, MAPK signaling activation, and enhanced expression of fibrosis-associated proteins, such as fibronectin, collagen 1, and α-SMA. However, conditioned media from Nano-Co-exposed BEAS-2B cells with HMGB1 knockdown had no effects on the activation of MRC-5 fibroblasts. Finally, inhibition of ERK1/2, p38, and JNK all abolished MRC-5 activation induced by conditioned media from Nano-Co-exposed BEAS-2B cells, suggesting that MAPK signaling might be a key downstream signal of HMGB1/RAGE to promote MRC-5 fibroblast activation. These findings have important implications for understanding the pro-fibrotic potential of Nano-Co.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Yuan J, Mo Y, Zhang Y, Zhang Y, Zhang Q. HMGB1 derived from lung epithelial cells after cobalt nanoparticle exposure promotes the activation of lung fibroblasts. Nanotoxicology. 2024;18(6):565-581. doi:10.1080/17435390.2024.2404074
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Nanotoxicology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}