Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge

dc.contributor.authorSieberts, Solveig K.
dc.contributor.authorSchaff, Jennifer
dc.contributor.authorDuda, Marlena
dc.contributor.authorPataki, Bálint Ármin
dc.contributor.authorSun, Ming
dc.contributor.authorSnyder, Phil
dc.contributor.authorDaneault, Jean-Francois
dc.contributor.authorParisi, Federico
dc.contributor.authorCostante, Gianluca
dc.contributor.authorRubin, Udi
dc.contributor.authorBanda, Peter
dc.contributor.authorChae, Yooree
dc.contributor.authorNeto, Elias Chaibub
dc.contributor.authorDorsey, E. Ray
dc.contributor.authorAydın, Zafer
dc.contributor.authorChen, Aipeng
dc.contributor.authorElo, Laura L.
dc.contributor.authorEspino, Carlos
dc.contributor.authorGlaab, Enrico
dc.contributor.authorGoan, Ethan
dc.contributor.authorGolabchi, Fatemeh Noushin
dc.contributor.authorGörmez, Yasin
dc.contributor.authorJaakkola, Maria K.
dc.contributor.authorJonnagaddala, Jitendra
dc.contributor.authorKlén, Riku
dc.contributor.authorLi, Dongmei
dc.contributor.authorMcDaniel, Christian
dc.contributor.authorPerrin, Dimitri
dc.contributor.authorPerumal, Thanneer M.
dc.contributor.authorRad, Nastaran Mohammadian
dc.contributor.authorRainaldi, Erin
dc.contributor.authorSapienza, Stefano
dc.contributor.authorSchwab, Patrick
dc.contributor.authorShokhirev, Nikolai
dc.contributor.authorVenäläinen, Mikko S.
dc.contributor.authorVergara-Diaz, Gloria
dc.contributor.authorZhang, Yuqian
dc.contributor.authorParkinson’s Disease Digital Biomarker Challenge Consortium
dc.contributor.authorWang, Yuanjia
dc.contributor.authorGuan, Yuanfang
dc.contributor.authorBrunner, Daniela
dc.contributor.authorBonato, Paolo
dc.contributor.authorMangravite, Lara M.
dc.contributor.authorOmberg, Larsson
dc.contributor.departmentMedicine, School of Medicine
dc.date.accessioned2024-07-17T12:30:31Z
dc.date.available2024-07-17T12:30:31Z
dc.date.issued2021-03-19
dc.description.abstractConsumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95).
dc.eprint.versionFinal published version
dc.identifier.citationSieberts SK, Schaff J, Duda M, et al. Crowdsourcing digital health measures to predict Parkinson's disease severity: the Parkinson's Disease Digital Biomarker DREAM Challenge. NPJ Digit Med. 2021;4(1):53. Published 2021 Mar 19. doi:10.1038/s41746-021-00414-7
dc.identifier.urihttps://hdl.handle.net/1805/42281
dc.language.isoen_US
dc.publisherSpringer Nature
dc.relation.isversionof10.1038/s41746-021-00414-7
dc.relation.journalNPJ Digital Medicine
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.sourcePMC
dc.subjectParkinson's disease
dc.subjectMachine learning
dc.subjectBiomarkers
dc.titleCrowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sieberts2021Crowdsourcing-CCBY.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: