Rapid and Slow Nitric Oxide Responses During Conducted Vasodilation in the In Vivo Intestine and Brain Cortex Microvasculatures

Date
2011
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Conduction of arteriolar vasodilation is initiated by activation of nitric oxide (NO) mechanisms, but dependent on conduction of hyperpolarization. Most studies have used brief (<1 second) activation of the initial vasodilation to evaluate the fast conduction processes. However, most arteriolar mechanisms involving NO production persist for minutes. In this study, fast and slower components of arteriolar conduction in the in vivo rat brain and small intestine were compared using three-minute stimulation of NO-dependent vasodilation and measurement of [NO] at the distal sites. Within 10-15 seconds, both vasculatures had a rapidly conducted vasodilation and dilation at distance had a fast but small [NO] component. A slower but larger distal vasodilation occurred after 60-90 seconds in the intestine, but not the brain, and was associated with a substantial increase in [NO]. This slowly developed dilation appeared to be caused by flow mediated responses of larger arterioles as smaller arterioles dilated to lower downstream resistance. These results indicate while the intestinal and cerebral arterioles have a fast conducted vasodilation system, the intestinal arterioles also have a slower but larger dilation of major arterioles that is NO related and dependent on the conduction of vasodilation between small arterioles.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Bohlen HG. Rapid and slow nitric oxide responses during conducted vasodilation in the in vivo intestine and brain cortex microvasculatures. Microcirculation. 2011;18(8):623-634. doi:10.1111/j.1549-8719.2011.00127.x
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Microcirculation
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}