The IGF-1/IGF-1R signaling axis in the skin: a new role for the dermis in aging-associated skin cancer

Date
2010
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

The appropriate response of human keratinocytes to ultraviolet-B (UVB) is dependent on the activation status of the insulin-like growth factor 1 (IGF-1) receptor. Keratinocytes grown in conditions in which the IGF-1 receptor is inactive inappropriately replicate in the presence of UVB-induced DNA damage. In human skin, epidermal keratinocytes do not express IGF-1, and hence the IGF-1 receptor on keratinocytes is activated by IGF-1 secreted from dermal fibroblasts. We now show that the IGF-1 produced by human fibroblasts is essential for the appropriate UVB response of keratinocytes. Furthermore, the expression of IGF-1 is silenced in senescent fibroblasts in vitro. Using quantitative reverse transcriptase-PCR and immunohistochemisty, we can show that IGF-1 expression is also silenced in geriatric dermis in vivo. The diminished IGF-1 expression in geriatric skin correlates with an inappropriate UVB response in geriatric volunteers. Finally, the appropriate UVB response is restored in geriatric skin in vivo through pretreatment with exogenous IGF-1. These studies provide further evidence for a role of the IGF-1 receptor (IGF-1R) in suppressing UVB-induced carcinogenesis, suggest that fibroblasts have a critical role in maintaining appropriate activation of the keratinocyte IGF-1R, and imply that reduced expression of IGF-1 in geriatric skin could be an important component in the development of aging-related non-melanoma skin cancer.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Lewis DA, Travers JB, Somani AK, Spandau DF. The IGF-1/IGF-1R signaling axis in the skin: a new role for the dermis in aging-associated skin cancer. Oncogene. 2010;29(10):1475-1485. doi:10.1038/onc.2009.440
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Oncogene
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}