Connexin 43 and Bone: Not Just a Gap Junction Protein

Date
2011
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Asociación Argentina de Osteología y Metabolismo Mineral
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Connexins are essential for the communication of cells among themselves and with their environment. Connexin hexamers assemble at the plasma membrane to form hemichannels that allow the exchange of cellular contents with the extracellular milieu. In addition, hemichannels expressed in neighboring cells align to form gap junction channels that mediate the exchange of contents among cells. Connexin 43 (Cx43) is the most abundant connexin expressed in bone cells and its deletion in all tissues leads to osteoblast dysfunction, as evidenced by reduced expression of osteoblast markers and delayed ossification. Moreover, Cx43 is essential for the survival of osteocytes; and mice lacking Cx43 in these cells exhibit increased prevalence of osteocyte apoptosis and empty lacunae in cortical bone. Work of several groups for the past few years has unveiled the role of Cx43 on the response of bone cells to a variety of stimuli. Thus, the preservation of the viability of osteoblasts and osteocytes by the anti-osteoporotic drugs bisphosphonates depends on Cx43 expression in vitro and in vivo. This survival effect does not require cell-to-cell communication and is mediated by unopposed hemichannels. Cx43 hemichannels are also required for the release of prostaglandins and ATP by osteocytes induced by mechanical stimulation in vitro. More recent evidence showed that the cAMP-mediated survival effect of parathyroid hormone (PTH) also requires Cx43 expression. Moreover, the hormone does not increase bone mineral content in mice haploinsufficient for Cx43 or lacking Cx43 in osteoblastic cells. Since inhibition of osteoblast apoptosis contributes, at least in part, to bone anabolism by PTH, the lack of response to the hormone might be due to the requirement of Cx43 for the effect of PTH on osteoblast survival. In summary, mounting evidence indicate that Cx43 is a key component of the intracellular machinery responsible for the transduction of signals in the skeleton in response to pharmacologic, hormonal and mechanical stimuli.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Plotkin LI. CONNEXIN 43 AND BONE: NOT JUST A GAP JUNCTION PROTEIN. Actual osteol. 2011;7(2):79-90.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Actualizaciones en Osteologia
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}