Methionine oxidation stabilizes non-toxic oligomers of α-synuclein through strengthening the auto-inhibitory intra-molecular long-range interactions

Date
2010
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Oxidative stress and aggregation of the presynaptic protein alpha-synuclein (alpha-Syn) are implied in the pathogenesis of Parkinson's disease and several other neurodegenerative diseases. Various posttranslational modifications, such as oxidation, nitration and truncation, have significant effects on the kinetics of alpha-Syn fibrillation in vitro. alpha-Syn is a typical natively unfolded protein, which possesses some residual structure. The existence of long-range intra-molecular interactions between the C-terminal tail (residues 120-140) and the central part of alpha-Syn (residues 30-100) was recently established (Bertoncini et al. (2005) Proc Natl Acad Sci U S A 102, 1430-1435). Since alpha-Syn has four methionines, two of which (Met 1 and 5) are at the N-terminus and the other two (Met 116 and 127) are in the hydrophobic cluster at the C-terminus of protein, the perturbation of these residues via their oxidation represents a good model for studying the effect of long-range interaction on alpha-Syn fibril formation. In this paper we show that Met 1, 116, and 127 are more protected from the oxidation than Met 5 likely due to the residual structure in the natively unfolded alpha-Syn. In addition to the hydrophobic interactions between the C-terminal hydrophobic cluster and hydrophobic central region of alpha-Syn, there are some long-range electrostatic interactions in this protein. Both of these interactions likely serve as auto-inhibitors of alpha-Syn fibrillation. Methionine oxidation affects both electrostatic and hydrophobic long-range interactions in alpha-Syn. Finally, oxidation of methionines by H2O2 greatly inhibited alpha-Syn fibrillation in vitro, leading to the formation of relatively stable oligomers, which are not toxic to dopaminergic and GABAergic neurons.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Zhou W, Long C, Reaney SH, Di Monte DA, Fink AL, Uversky VN. Methionine oxidation stabilizes non-toxic oligomers of alpha-synuclein through strengthening the auto-inhibitory intra-molecular long-range interactions. Biochim Biophys Acta. 2010;1802(3):322-330. doi:10.1016/j.bbadis.2009.12.004
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Biochimica et Biophysica acta
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}