Mapping Immunological, Host Receptor Binding Determinants, and Cathepsin Cleavage Site of EBOV Glycoprotein Utilizing the Qubevirus Platform

Date
2025-03-31
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
ACS
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Ebola virus (EBOV) remains a highly infectious human pathogen that causes a severe and lethal disease known as Ebola virus disease (EVD), despite recent progress in vaccine development based on its only surface glycoprotein (GP). In this study, we modeled and inserted four overlapping fragments (F1-4) of the EBOV GP at the C-terminus of the A1 protein of Qubevirus (Qβ) and used the platform to investigate the tropism and immunological functions of the GP by displaying the peptides with 30 overlapping amino acids. The resulting recombinant phages were used to determine their reactivity with GP-specific antibodies and their binding to the recombinant Niemann-Pick C1 (rNPC1) receptor in an immunoassay. In addition, modified, truncated, and C-terminus-tagged fragment F1 named F5 was utilized to map the cathepsin cleavage sites in an enzymatic assay. We demonstrated that a large GP peptide of 200 AA could be fused to A1 and exposed on the Qβ platform in an accessible manner without significantly affecting its viability and infectivity. Fragments F1 (GP1-200), F2 (GP170-370), and F3 (GP350-550) were shown to contain important immune epitopes through binding to anti-GP-specific antibodies. Further, F1 was found to bind rNPC1, thereby suggesting a receptor binding determinant of the GP that was further confirmed in a competitive assay where the recombinant phages bearing the F1 fragment reduced the infectivity of EBOV pseudovirus by 27%. In addition, the viral infectivity was shown to be reduced by 46.39% by a cyclic peptide selected from an RNA Qβ library. Finally, F5 showed the cleavage sites to be AA191-192 and AA194-195 for CatB and L, respectively, which were further validated using a recombinant EBOV glycoprotein. These results provide insights into the antigenicity and tropism characteristic of the glycoprotein, with implications for the development of subunit vaccines or other biologics against Ebola virus disease.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Ntemafack A, Dzelamonyuy A, Nchinda G, Bopda Waffo A. Mapping Immunological, Host Receptor Binding Determinants, and Cathepsin Cleavage Site of EBOV Glycoprotein Utilizing the Qubevirus Platform. ACS Omega. 2025;10(14):14283-14295. Published 2025 Mar 31. doi:10.1021/acsomega.5c00408
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
ACS Omega
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}