A conserved signal and GTPase complex are required for the ciliary transport of polycystin-1
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Primary cilia regulate epithelial differentiation and organ function. Failure of mutant polycystins to localize to cilia abolishes flow-stimulated calcium signaling and causes autosomal dominant polycystic kidney disease. We identify a conserved amino acid sequence, KVHPSST, in the C-terminus of polycystin-1 (PC1) that serves as a ciliary-targeting signal. PC1 binds a multimeric protein complex consisting of several GTPases (Arf4, Rab6, Rab11) and the GTPase-activating protein (GAP), ArfGAP with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1) in the Golgi, which facilitates vesicle budding and Golgi exocytosis. A related N-terminal ciliary-targeting sequence in polycystin-2 similarly binds Arf4. Deletion of the extreme C-terminus of PC1 ablates Arf4 and ASAP1 binding and prevents ciliary localization of an integral membrane CD16.7-PC1 chimera. Interactions are confirmed for chimeric and endogenous proteins through quantitated in vitro and cell-based approaches. PC1 also complexes with Rab8; knockdown of trafficking regulators Arf4 or Rab8 functionally blocks CD16.7-PC1 trafficking to cilia. Mutations in rhodopsin disrupt a similar signal and cause retinitis pigmentosa, while Bardet-Biedl syndrome, primary open-angle glaucoma, and tumor cell invasiveness are linked to dysregulation of ASAP1 or Rab8 or its effectors. In this paper, we provide evidence for a conserved GTPase-dependent ciliary-trafficking mechanism that is shared between epithelia and neurons, and is essential in ciliary-trafficking and cell homeostasis.
