Mediation Analysis with Multiple Exposures and Multiple Mediators

Date
2024
Authors
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

A mediation analysis approach is proposed for multiple exposures, multiple mediators, and a continuous scalar outcome under the linear structural equation modeling framework. It assumes that there exist orthogonal components that demonstrate parallel mediation mechanisms on the outcome, and thus is named principal component mediation analysis (PCMA). Likelihood-based estimators are introduced for simultaneous estimation of the component projections and effect parameters. The asymptotic distribution of the estimators is derived for low-dimensional data. A bootstrap procedure is introduced for inference. Simulation studies illustrate the superior performance of the proposed approach. Applied to a proteomics-imaging dataset from the Alzheimer's disease neuroimaging initiative (ADNI), the proposed framework identifies protein deposition - brain atrophy - memory deficit mechanisms consistent with existing knowledge and suggests potential AD pathology by integrating data collected from different modalities.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Zhao Y. Mediation Analysis with Multiple Exposures and Multiple Mediators. Stat Med. 2024;43(25):4887-4898. doi:10.1002/sim.10215
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Statistics in Medicine
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}