- Browse by Title
Christie Orschell
Permanent URI for this collection
Side effects of cancer chemotherapy and radiotherapy include destruction of bone marrow stem and progenitor cells. These cells help the body fight against life-threatening infection and hemorrhage. Exposure from radiological terrorism or accidents also leads to severe bone marrow damage. There are many FDA-approved medications to help bone marrow recovery after cancer treatment, but currently only two approved medical countermeasures (MCM) for individuals exposed to lethal doses of radiation. These medications, Neupogen and Neulasta, are “repurposed” from the cancer field.
Dr. Christie Orschell’s laboratory developed mouse models of the Hematopoietic-Acute Radiation Syndrome (H-ARS) and the Delayed Effects of Acute Radiation Exposure (DEARE) for efficacy testing of MCM against radiation according to the FDA Animal Rule. Under the Animal Rule, which guides drug development when human efficacy studies are unethical or unfeasible, development of radiation MCMs must first use animal models. Her models contributed to the approval of Neupogen and Neulasta, and have been promoted by the NIH to undergo qualification as a “drug development tool” by the FDA, which would allow the model to be publicly available for use in drug development programs and included in FDA submissions without the need to reconfirm suitability of the model.
Dr. Orschell’s work to develop animal models for radiation drug discovery is another example of how IUPUI faculty are TRANSLATING RESEARCH INTO PRACTICE.
Browse
Browsing Christie Orschell by Title
Results Per Page
Sort Options
Item The Access Technology Program of the Indiana Clinical Translational Sciences Institute (CTSI): A model to facilitate access to cutting-edge technologies across a state(Cambridge, 2021) Orschell, Christie M.; Skaar, Todd C.; DeFord, Melanie E.; Ybe, Joel; Driscol, Julie; Drury, Christine; Reeves, Lilith; Willis, Monte S.; Reiter, Jill L.; York, Jenna; Orr, Rob; McClintick, Jeanette N.; Sors, Thomas G.; Hunt, Joe; Cornetta, Kenneth; Shekhar, Anantha; Medicine, School of MedicineIntroduction: Access to cutting-edge technologies is essential for investigators to advance translational research. The Indiana Clinical and Translational Sciences Institute (CTSI) spans three major and preeminent universities, four large academic campuses across the state of Indiana, and is mandate to provide best practices to a whole state. Methods: To address the need to facilitate the availability of innovative technologies to its investigators, the Indiana CTSI implemented the Access Technology Program (ATP). The activities of the ATP, or any program of the Indiana CTSI, are challenged to connect technologies and investigators on the multiple Indiana CTSI campuses by the geographical distances between campuses (1–4 hr driving time). Results: Herein, we describe the initiatives developed by the ATP to increase the availability of state-of-the-art technologies to its investigators on all Indiana CTSI campuses, and the methods developed by the ATP to bridge the distance between campuses, technologies, and investigators for the advancement of clinical translational research. Conclusions: The methods and practices described in this publication may inform other approaches to enhance translational research, dissemination, and usage of innovative technologies by translational investigators, especially when distance or multi-campus cultural differences are factors to efficient application.Item Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass(Elsevier, 2019) Maupin, Kevin A.; Himes, Evan R.; Plett, Artur P.; Chua, Hui Lin; Singh, Pratibha; Ghosh, Joydeep; Mohamad, Safa F.; Abeysekera, Irushi; Fisher, Alexa; Sampson, Carol; Hong, Jung-Min; Childress, Paul; Alvarez, Marta; Srour, Edward F.; Bruzzaniti, Angela; Pelus, Louis M.; Orschell, Christie M.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineOsteoblast number and activity decreases with aging, contributing to the age-associated decline of bone mass, but the mechanisms underlying changes in osteoblast activity are not well understood. Here, we show that the age-associated bone loss critically depends on impairment of the ability of megakaryocytes (MKs) to support osteoblast proliferation. Co-culture of osteoblast precursors with young MKs is known to increase osteoblast proliferation and bone formation. However, co-culture of osteoblast precursors with aged MKs resulted in significantly fewer osteoblasts compared to co-culture with young MKs, and this was associated with the downregulation of transforming growth factor beta. In addition, the ability of MKs to increase bone mass was attenuated during aging as transplantation of GATA1low/low hematopoietic donor cells (which have elevated MKs/MK precursors) from young mice resulted in an increase in bone mass of recipient mice compared to transplantation of young wild-type donor cells, whereas transplantation of GATA1low/low donor cells from old mice failed to enhance bone mass in recipient mice compared to transplantation of old wild-type donor cells. These findings suggest that the preservation or restoration of the MK-mediated induction of osteoblast proliferation during aging may hold the potential to prevent age-associated bone loss and resulting fractures.Item Aging-Related Reduced Expression of CXCR4 on Bone Marrow Mesenchymal Stromal Cells Contributes to Hematopoietic Stem and Progenitor Cell Defects(SpringerLink, 2020-08) Singh, Pratibha; Kacena, Melissa A.; Orschell, Christie M.; Pelus, Louis M.; Microbiology and Immunology, School of MedicineAging impairs the regenerative potential of hematopoietic stem cells (HSC) and skews differentiation towards the myeloid lineage. The bone marrow (BM) microenvironment has recently been suggested to influence HSC aging, however the mechanisms whereby BM stromal cells mediate this effect is unknown. Here we show that aging-associated decreased expression of CXCR4 expression on BM mesenchymal stem cells (MSC) plays a crucial role in the development of the hematopoietic stem and progenitor cells (HSPC) aging phenotype. The BM MSC from old mice was sufficient to drive a premature aging phenotype of young HSPC when cultured together ex vivo. The impaired ability of old MSC to support HSPC function is associated with reduced expression of CXCR4 on BM MSC of old mice. Deletion of the CXCR4 gene in young MSC accelerates an aging phenotype in these cells characterized by increased production of reactive oxygen species (ROS), DNA damage, senescence, and reduced proliferation. Culture of HSPC from young mice with CXCR4 deficient MSC also from young mice led to a premature aging phenotype in the young HSPC, as evidenced by reduced hematopoietic regeneration and enhanced myeloid differentiation. Mechanistically, CXCR4 signaling prevents BM MSC dysfunction by suppressing oxidative stress, as treatment of old or CXCR4 deficient MSC with N-acetyl-L-cysteine (NAC), improved their niche supporting activity, and attenuated the HSPC aging phenotype. Our studies suggest that age-associated reduction in CXCR4 expression on BM MSC impairs hematopoietic niche activity with increased ROS production, driving an HSC aging phenotype. Thus, modulation of the SDF-1/CXCR4 axis in MSC may lead to novel interventions to alleviate the age-associated decline in immune/hematopoietic function.Item Alterations to maternal cortical and trabecular bone in multiparous middle-aged mice(Hylonome, 2017-12-01) Gu, A.; Sellamuthu, R.; Himes, E.; Childress, P.J.; Pelus, L.M.; Orschell, C.M.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineOBJECTIVES: During the reproductive cycle, altered calcium homeostasis is observed due to variable demand for mineral requirements. This results in increased bone resorption during the time period leading up to parturition and subsequent lactation. During lactation, women will lose 1-3% of bone mineral density per month, which is comparable to the loss experienced on an annual basis post-menopausal. The purpose of this study was to determine the effect of parity on bone formation in middle-aged mice. METHODS: Mice were mated and grouped by number of parity and compared with age matched nulliparous controls. Measurements were taken of femoral trabecular and cortical bone. Calcium, protein and alkaline phosphatase levels were also measured. RESULTS: An increase in trabecular bone mineral density was observed when comparing mice that had undergone parity once to the nulliparous control. An overall decrease in trabecular bone mineral density was observed as parity increased from 1 to 5 pregnancies. No alteration was seen in cortical bone formation. No difference was observed when calcium, protein and alkaline phosphatase levels were assessed. CONCLUSIONS: This study demonstrates that number of parity has an impact on trabecular bone formation in middle-aged mice, with substantial changes in bone density seen among the parous groups.Item Alterations to maternal cortical and trabecular bone in multiparous middle-aged mice(Hylonome, 2017-11) Gu, Alex; Sellamuthu, Rajendran; Himes, Evan; Childress, Paul J.; Pelus, Louis M.; Orschell, Christie M.; Kacena, Melissa A.; Orthopaedic Surgery, School of MedicineObjectives: During the reproductive cycle, altered calcium homeostasis is observed due to variable demand for mineral requirements. This results in increased bone resorption during the time period leading up to parturition and subsequent lactation. During lactation, women will lose 1-3% of bone mineral density per month, which is comparable to the loss experienced on an annual basis post-menopausal. The purpose of this study was to determine the effect of parity on bone formation in middle-aged mice. Methods: Mice were mated and grouped by number of parity and compared with age matched nulliparous controls. Measurements were taken of femoral trabecular and cortical bone. Calcium, protein and alkaline phosphatase levels were also measured. Results: An increase in trabecular bone mineral density was observed when comparing mice that had undergone parity once to the nulliparous control. An overall decrease in trabecular bone mineral density was observed as parity increased from 1 to 5 pregnancies. No alteration was seen in cortical bone formation. No difference was observed when calcium, protein and alkaline phosphatase levels were assessed. Conclusions: This study demonstrates that number of parity has an impact on trabecular bone formation in middle-aged mice, with substantial changes in bone density seen among the parous groups.Item Cardiac and Renal Delayed Effects of Acute Radiation Exposure: Organ Differences in Vasculopathy, Inflammation, Senescence and Oxidative Balance(Radiation Research Society, 2019-05) Unthank, Joseph L.; Ortiz, Miguel; Trivedi, Hina; Pelus, Louis M.; Sampson, Carol H.; Sellamuthu, Rajendran; Fisher, Alexa; Chua, Hui Lin; Plett, Artur; Orschel, Christie M.; Cohen, Eric P.; Miller, Steven J.; Surgery, School of MedicineWe have previously shown significant pathology in the heart and kidney of murine hematopoietic-acute radiation syndrome (H-ARS) survivors of 8.7-9.0 Gy total-body irradiation (TBI). The goal of this study was to determine temporal relationships in the development of vasculopathy and the progression of renal and cardiovascular delayed effects of acute radiation exposure (DEARE) at TBI doses less than 9 Gy and to elucidate the potential roles of senescence, inflammation and oxidative stress. Our results show significant loss of endothelial cells in coronary arteries by 4 months post-TBI (8.53 or 8.72 Gy of gamma radiation). This loss precedes renal dysfunction and interstitial fibrosis and progresses to abnormalities in the arterial media and adventitia and loss of coronary arterioles. Major differences in radiation-induced pathobiology exist between the heart and kidney in terms of vasculopathy progression and also in indices of inflammation, senescence and oxidative imbalance. The results of this work suggest a need for different medical countermeasures for multiple targets in different organs and at various times after acute radiation injury to prevent the progression of DEARE.Item Combined hydration and antibiotics with lisinopril to mitigate acute and delayed high-dose radiation injuries to multiple organs(Lippincott, Williams & Wilkins, 2016-11) Fish, Brian L.; Gao, Feng; Narayanan, Jayashree; Bergom, Carmen; Jacobs, Elizabeth R.; Cohen, Eric P.; Moulder, John E.; Orschell, Christie M.; Medhora, Meetha; Medicine, School of MedicineThe NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study we have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ∼24 mg m-2 day-1 started orally in the drinking water at 7 days after irradiation and continued to ≥150 days) mitigated late effects in the lungs and kidneys after 12.5 Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 days after 13 Gy leg-out PBI. Furthermore lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg-1 day-1 from days 1-14) which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, we mitigated acute and delayed radiation injuries in multiple organs.Item Corrigendum: Polypharmacy to Mitigate Acute and Delayed Radiation Syndromes(Frontiers Media, 2021-08-25) Gasperetti, Tracy; Miller, Tessa; Gao, Feng; Narayanan, Jayashree; Jacobs, Elizabeth R.; Szabo, Aniko; Cox, George N.; Orschell, Christie M.; Fish, Brian L.; Medhora, Meetha; Medicine, School of Medicine[This corrects the article DOI: 10.3389/fphar.2021.634477.].Item Deficiency of Src family kinases compromises the repopulating ability of hematopoietic stem cells(Elsevier, 2008-05) Orschell, Christie M.; Borneo, Jovencio; Munugalavadla, Veerendra; Ma, Peilin; Sims, Emily; Ramdas, Baskar; Yoder, Mervin C.; Kapur, Reuben; Department of Medicine, IU School of MedicineOBJECTIVE: Src family kinases (SFK) have been implicated in regulating growth factor and integrin-induced proliferation, migration, and gene expression in multiple cell types. However, little is known about the role of these kinases in the growth, homing, and engraftment potential of hematopoietic stem and progenitor cells. RESULTS: Here we show that loss of hematopoietic-specific SFKs Hck, Fgr, and Lyn results in increased number of Sca-1(+)Lin(-) cells in the bone marrow, which respond differentially to cytokine-induced growth in vitro and manifest a significant defect in the long-term repopulating potential in vivo. Interestingly, a significant increase in expression of adhesion molecules, known to coincide with the homing potential of wild-type bone marrow cells is also observed on the surface of SFK(-/-) cells, although, this increase did not affect the homing potential of more primitive Lin(-)Sca-1(+) SFK(-/-) cells. The stem cell-repopulating defect observed in mice transplanted with SFK(-/-) bone marrow cells is due to the loss of Lyn Src kinase, because deficiency of Lyn, but not Hck or Fgr, recapitulated the long-term stem cell defect observed in mice transplanted with SFK(-/-) bone marrow cells. CONCLUSIONS: Taken together, our results demonstrate an essential role for Lyn kinase in positively regulating the long-term and multilineage engraftment of stem cells, which is distinct from its role in mature B cells and myeloid cells.Item Delayed effects of acute radiation exposure (DEARE) in a murine model of the hematopoietic acute radiation syndrome: Multiple-organ injury consequent to total body irradiation(Office of the Vice Chancellor for Research, 2015-04-17) Quickery, Ariel; Unthank, Joseph L.; Miller, Steven J.; Orschell, Christie M.Introduction. Victims of radiation exposure from terrorist activity, radiation accidents or radiologic warfare will face a variety of acute and chronic organ injuries requiring multi-faceted approaches to treatment. The hematopoietic system is the most sensitive tissue to radiation damage, resulting in the hematopoietic acute radiation syndrome (H-ARS) after exposures of 2-10 Gy in mice. If untreated, H-ARS results in death within weeks from opportunistic infection and/or hemorrhage due to loss of neutrophils and platelets, respectively. However, survivors of ARS are plagued months to years later in life by delayed effects of acute radiation exposure (DEARE), a myriad of chronic illnesses affecting multiple organ systems believed to be due to persistent systemic oxidative stress, inflammation, fibrosis and loss of stem cell self-renewal. Fibrosis and collagen deposition disrupt both normal tissue structure and function and are common to organs with late radiation injury including the kidney and heart after radiation doses >15Gy, but have not been shown to exist after doses as low as those used in the H-ARS model (8Gy). The goal of this study was to determine the extent, if any, of heart and kidney DEARE in survivors of H-ARS. Methods. Mice (male and female C57BL/6) received total body irradiation (TBI; LD50/30 to LD70/30) and kidney and heart were harvested at 9 and 21 months from the H-ARS survivor mice. Tissues were fixed in neutral buffered formalin, paraffin embedded and sectioned, then stained with hematoxylin/eosin (H&E), trichrome, or picosirius red. Serum was collected at 4.3, 9, and 21 months post-TBI and analyzed for blood urea nitrogen (BUN) as an indicator of kidney function. Total RNA was purified from heart and relative changes in NADPH oxidase 2 (Nox2) mRNA expression were assessed by quantitative real-time PCR. Results/Significance. Compared to age-matched non-irradiated controls (NI), renal pathology at 9 months post-TBI was manifest primarily as enlargement of Bowman’s capsule and glomerosclerosis along with limited interstitial fibrosis. By 21 months there was progression of these pathologies as well as extensive interstitial fibrosis, tubular atrophy, cysts, and atubular glomeruli, all of which were more pronounced in TBI mice compared to NI. Consistent with the renal pathology, BUN in TBI mice was significantly increased at 9 and 21 months post-TBI vs. 4.3 months, but normal in NI mice at all time points. In the heart, pericardial, perivascular and interstitial fibrosis were observed at 9 months with increased severity at 21 months post-TBI compared to NI. The perivascular fibrosis was associated with increased medial layer collagen and apparent loss of vascular smooth muscle cells. Nox2 mRNA in heart was increased at 9 and 21 months post-TBI, indicating an increase in oxidant stress. To our knowledge, such striking heart and kidney damage has not been documented after radiation doses as low as those in our H-ARS model (~8Gy) and indicate that DEARE is a concern for individuals exposed to radiation doses previously thought to not elicit late effects.
- «
- 1 (current)
- 2
- 3
- »