ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "respiratory disturbance index"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Upper Airway Areas, Volumes, and Linear Measurements Determined on Computed Tomography During Different Phases of Respiration Predict the Presence of Severe Obstructive Sleep Apnea
    (Elsevier, 2017) Chousangsuntorn, Khaisang; Bhongmakapat, Thongchai; Apirakkittikul, Navarat; Sungkarat, Witaya; Supakul, Nucharin; Laothamatas, Jiraporn; Radiology and Imaging Sciences, School of Medicine
    Purpose The objective of this study was to analyze the potential of using low-dose volumetric computed tomography (CT) during different phases of respiration for identifying patients likely to have severe obstructive sleep apnea (OSA), defined as a respiratory disturbance index (RDI) higher than 30. Patients and Methods A prospective study was undertaken at the Ramathibodi Hospital (Bangkok, Thailand). Patients with diagnosed OSA (N = 82) were recruited and separated into group 1 (RDI, ≤30; n = 36) and group 2 (RDI, >30; n = 46). The 2 groups were scanned by low-dose volumetric CT while they were 1) breathing quietly, 2) at the end of inspiration, and 3) at the end of expiration. Values for CT variables were obtained from linear measurements on lateral scout images during quiet breathing and from the upper airway area and volume measurements were obtained on axial cross-sections during different phases of respiration. All CT variables were compared between study groups. A logistic regression model was constructed to calculate a patient's likelihood of having an RDI higher than 30 and the predictive value of each variable and of the final model. Results The minimum cross-sectional area (MCA) measured at the end of inspiration (cutoff point, ≤0.33 cm2) was the most predictive variable for the identification of patients likely to have an RDI higher than 30 (adjusted odds ratio [OR] = 5.50; 95% confidence interval [CI], 1.76-17.20; sensitivity, 74%; specificity, 72%,), followed by the MCA measured at the end of expiration (cutoff point, ≤0.21 cm2; adjusted OR = 3.28; 95% CI, 1.05-10.24; sensitivity, 70%; specificity, 68%). Conclusion CT scanning at the ends of inspiration and expiration helped identify patients with an RDI higher than 30 based on measurement of the MCA. Low-dose volumetric CT can be a useful tool to help the clinician rapidly identify patients with severe OSA and decide on the urgency to obtain a full-night polysomnographic study and to start treatment.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University