- Browse by Subject
Browsing by Subject "proton beam therapy"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Biological Dose Estimation Model for Proton Beam Therapy(Scientific Research, 2015-05) Anferov, Vladimir; Das, Indra J.; Department of Radiation Oncology, IU School of MedicinePurpose: The recommended value for the relative biological effectiveness (RBE) of proton beams is currently assumed to be 1.1. However, there is increasing evidence that RBE increases towards the end of proton beam range that may increase the biological effect of proton beam in the distal regions of the dose deposition. Methods: A computational approach is presented for estimating the biological effect of the proton beam. It includes a method for calculating the dose averaged linear energy transfer (LET) along the measured Bragg peak and published LET to RBE conversion routine. To validate the proposed method, we have performed Monte Carlo simulations of the pristine Bragg peak at various beam energies and compared the analysis with the simulated results. A good agreement within 5% is observed between the LET analysis of the modeled Bragg peaks and Monte Carlo simulations. Results: Applying the method to the set of Bragg peaks measured at a proton therapy facility we have estimated LET and RBE values along each Bragg peak. Combining the individual RBE-weighted Bragg peaks with known energy modulation weights we have calculated the RBE-weighted dose in the modulated proton beam. The proposed computational method provides a tool for calculating dose averaged LET along the measured Bragg peak. Conclusions: Combined with a model to convert LET into RBE, this method enables calculation of RBE-weighted dose both in pristine Bragg peak and in modulated beam in proton therapy.Item Dosimetric Comparison of Treatment Techniques: Brachytherapy, Intensity- Modulated Radiation Therapy, and Proton Beam in Partial Breast Irradiation(2015) Hansen, Tara M.; Bartlett, Gregory K.; Mannina, Edward M. Jr.; Srivastava, Shiv P.; Cox, John A.; Das, Indra J.; Department of Radiation Oncology, IU School of MedicinePurpose: To perform a dosimetric comparison of 3 accelerated partial breast irradiation techniques: catheter-based brachytherapy (BT), intensity-modulated radiation therapy (IMRT), and proton beam therapy (PBT). Patients and Methods: Twelve patients with left-sided breast cancer treated with SAVI (Strut-Adjusted Volume Implant) were selected in this study. The original BT plans were compared with optimum plans using IMRT and PBT for 34 Gy (RBE) with 1.1 RBE in 10 fractions using identical parameters for target and organs at risk. Results: Significant reduction in maximum dose to the ipsilateral breast was observed with PBT and IMRT (mean 108.58% [PBT] versus 107.78% [IMRT] versus 2194.43% [BT], P = .001 for both PBT and IMRT compared to BT). The mean dose to the heart was 0%, 1.38%, and 3.85%, for PBT, IMRT, and BT, respectively (P < .001 and P = .026). The chest wall mean dose was 10.07%, 14.65%, and 29.44% for PBT, IMRT, and BT, respectively (P = .001 and .013 compared to BT). The PBT was superior in reducing the mean ipsilateral lung dose (mean 0.04% versus 2.13% versus 5.4%, P = .025 and P < .001). There was no statistically significant difference in the maximum dose to the ipsilateral lung, chest wall, 3-mm skin rind or in the mean ipsilateral breast V50% among the 3 techniques (P = .168, .405, .067, and .780, respectively). PBT exhibited the greatest mean dose homogeneity index of 4.75 compared to 7.18 for IMRT (P = .001) and 195.82 for BT (P < .001). All techniques resulted in similar dose conformality (P = .143). Conclusion: This study confirms the dosimetric feasibility of PBT and IMRT to lower dose to organs at risk while still maintaining high target dose conformality. Though the results of this comparison are promising, continued clinical research is needed to better define the role of PBT and IMRT in the accelerated partial breast irradiation treatment of early-stage breast cancer.