ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "pneumonitis"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Combined hydration and antibiotics with lisinopril to mitigate acute and delayed high-dose radiation injuries to multiple organs
    (Lippincott, Williams & Wilkins, 2016-11) Fish, Brian L.; Gao, Feng; Narayanan, Jayashree; Bergom, Carmen; Jacobs, Elizabeth R.; Cohen, Eric P.; Moulder, John E.; Orschell, Christie M.; Medhora, Meetha; Medicine, School of Medicine
    The NIAID Radiation and Nuclear Countermeasures Program is developing medical agents to mitigate the acute and delayed effects of radiation that may occur from a radionuclear attack or accident. To date, most such medical countermeasures have been developed for single organ injuries. Angiotensin converting enzyme (ACE) inhibitors have been used to mitigate radiation-induced lung, skin, brain and renal injuries in rats. ACE inhibitors have also been reported to decrease normal tissue complication in radiation oncology patients. In the current study we have developed a rat partial-body irradiation (leg-out PBI) model with minimal bone marrow sparing (one leg shielded) that results in acute and late injuries to multiple organs. In this model, the ACE inhibitor lisinopril (at ∼24 mg m-2 day-1 started orally in the drinking water at 7 days after irradiation and continued to ≥150 days) mitigated late effects in the lungs and kidneys after 12.5 Gy leg-out PBI. Also in this model, a short course of saline hydration and antibiotics mitigated acute radiation syndrome following doses as high as 13 Gy. Combining this supportive care with the lisinopril regimen mitigated overall morbidity for up to 150 days after 13 Gy leg-out PBI. Furthermore lisinopril was an effective mitigator in the presence of the growth factor G-CSF (100 μg kg-1 day-1 from days 1-14) which is FDA-approved for use in a radionuclear event. In summary, by combining lisinopril (FDA-approved for other indications) with hydration and antibiotics, we mitigated acute and delayed radiation injuries in multiple organs.
  • Loading...
    Thumbnail Image
    Item
    Life-Threatening Docetaxel Toxicity in a Patient With Reduced-Function CYP3A Variants: A Case Report.
    (Frontiers, 2021) Powell, Nicholas R.; Shugg, Tyler; Ly, Reynold C.; Albany, Costantine; Radovich, Milan; Schneider, Bryan P.; Skaar, Todd C.
    Docetaxel therapy occasionally causes severe and life-threatening toxicities. Some docetaxel toxicities are related to exposure, and inter-individual variability in exposure has been described based on genetic variation and drug-drug interactions that impact docetaxel clearance. Cytochrome P450 3A4 (CYP3A4) and CYP3A5 metabolize docetaxel into inactive metabolites, and this is the primary mode of docetaxel clearance. Supporting their role in these toxicities, increased docetaxel toxicities have been found in patients with reduced- or loss-of-function variants in CYP3A4 and CYP3A5. However, since these variants in CYP3A4 are rare, little is known about the safety of docetaxel in patients who are homozygous for the reduced-function CYP3A4 variants. Here we present a case of life-threatening (grade 4) pneumonitis, dyspnea, and neutropenia resulting from a single dose of docetaxel. This patient was (1) homozygous for CYP3A4*22, which causes reduced expression and is associated with increased docetaxel-related adverse events, (2) heterozygous for CYP3A4*3, a rare reduced-function missense variant, and (3) homozygous for CYP3A5*3, a common loss of function splicing defect that has been associated with increased docetaxel exposure and adverse events. The patient also carried functional variants in other genes involved in docetaxel pharmacokinetics that may have increased his risk of toxicity. We identified one additional CYP3A4*22 homozygote that received docetaxel in our research cohort, and present this case of severe hematological toxicity. Furthermore, the one other CYP3A4*22 homozygous patient we identified from the literature died from docetaxel toxicity. This case report provides further evidence for the need to better understand the impact of germline CYP3A variants in severe docetaxel toxicity and supports using caution when treating patients with docetaxel who have genetic variants resulting in CYP3A poor metabolizer phenotypes.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University