- Browse by Subject
Browsing by Subject "mobile applications"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item ACTS: Extracting Android App Topological Signature through Graphlet Sampling(IEEE, 2016-10) Peng, Wei; Gao, Tianchong; Sisodia, Devkishen; Saha, Tanay Kumar; Li, Feng; Al Hasan, Mohammad; Computer Information and Graphics Technology, School of Engineering and TechnologyAndroid systems are widely used in mobile & wireless distributed systems. In the near future, Android is believed to dominate the mobile distributed environment. However, with the popularity of Android-based smartphones/tablets comes the rampancy of Android-based malware. In this paper, we propose a novel topological signature of Android apps based on the function call graphs (FCGs) extracted from their Android App Packages (APKs). Specifically, by leveraging recent advances in graphlet sampling, the proposed method fully captures the invocator-invocatee relationship at local neighborhoods in an FCG without exponentially inflating the state space. Using real benign app and malware samples, we demonstrate that our method, ACTS (App topologiCal signature through graphleT Sampling), can detect malware and identify malware families robustly and efficiently. More importantly, we demonstrate that, without augmenting the FCG with any semantic features such as bytecode-based vertex typing, local topological information captured by ACTS alone can achieve a high malware detection accuracy. Since ACTS only uses structural features, which are orthogonal to semantic features, it is expected that combining them would give a greater improvement in malware detection accuracy than combining non-orthogonal semantic features.Item Android Malware Detection via Graphlet Sampling(IEEE, 2018-11) Gao, Tianchong; Peng, Wei; Sisodia, Devkishen; Saha, Tanay Kumar; Li, Feng; Al Hasan, Mohammad; Computer Information and Graphics Technology, School of Engineering and TechnologyAndroid systems are widely used in mobile & wireless distributed systems. In the near future, Android is believed to dominate the mobile distributed environment. However, with the popularity of Android-based smartphones/tablets comes the rampancy of Android-based malware. In this paper, we propose a novel topological signature of Android apps based on the function call graphs (FCGs) extracted from their Android App PacKages (APKs). Specifically, by leveraging recent advances on graphlet mining, the proposed method fully captures the invocator-invocatee relationship at local neighborhoods in an FCG without exponentially inflating the state space. Using real benign app and malware samples, we demonstrate that our method, ACTS (App topologiCal signature through graphleT Sampling), can detect malware and identify malware families robustly and efficiently. More importantly, we demonstrate that, without augmenting the FCG with any semantic features such as bytecode-based vertex typing, local topological information captured by ACTS alone can achieve a high malware detection accuracy. Since ACTS only uses structural features, which are orthogonal to semantic features, it is expected that combining them would give a greater improvement in malware detection accuracy than combining non-orthogonal semantic features.Item Mobile Wellness Resources(Taylor & Francis, 2016) Herron, Jennifer; Ruth Lilly Medical Library, IU School of MedicineStress in medical students is not unheard of, nor is it unexpected. Medical students have rigorous schedules and must pass a series of examinations, placing enormous pressure on them to succeed. As medical students move into their careers, this same stress can follow them and impact not only their health but also that of their patients. This stress can lead to depression and anxiety and eventually can cause burnout. Libraries are already well aware of the stress students feel, especially around exam time. Therapy dogs visiting the libraries are a common sight, and more libraries are beginning to offer some form of art therapy for students. Medical libraries can further support students’ wellness needs by promoting mobile wellness resources.