- Browse by Subject
Browsing by Subject "hypolimnion"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Combined Molecular and Isotopic Study of Sulfur Bacteria in Meromictic Lakes of the Pacific Northwest(2023-12) Harris, James H., IV; Gilhooly, William P., III; Druschel, Gregory K.; Bird, Broxton W.The isotope effects that result from the activity of modern sulfur metabolizing bacteria serve as analogs to interpreting the sulfur isotope values preserved in the geologic record. This biogenic signal is vital to reconstructing the history of Earth’s ancient oceans and atmosphere. However, the isotope compositions imprinted by these bacteria were influenced by multiple factors that must be considered when using these values to make interpretations about environmental change. These factors include: (1) sulfate availability, (2) the rapid and quantitative reoxidation of sulfide (i.e., cryptic sulfur cycling), (3) the initial oxygen isotope compositions of sulfate and water, and (4) the taxonomic structure of sulfur-metabolizing bacterial communities. To address these questions, this project studied four permanently stratified, anoxic and sulfidic (euxinic), lakes in southern British Columbia, Canada, and northern Washington, USA, that have a wide range of sulfate concentrations, from 0.15 – 120 mM. This project resulted in six key findings – (1) the measurement of large Δ34SSO4-H2S values at micromolar sulfate concentrations, (2) the consistent occurrence of δ18OSO4 minima at the chemocline that may be imparted during cryptic sulfur cycling, (3) that subsequent δ18OSO4 enrichments consistently preceded sulfide accumulation and δ34SSO4 enrichment in the suboxic zone of the water column, (4) that initial epilimnion Δ18OSO4-H2O values placed constraints on the maximum extent of δ18OSO4 evolution that occurred beneath the chemocline, (5) that observable changes in the metabolic composition of sulfur bacterial communities accompanied key inflections in the sulfur and oxygen isotope profiles of sulfate and sulfide within the water column, and (6) that, despite large overall differences in community structure, Δ34SSO4-H2S and Δ18OSO4-H2O values ultimately reached similar magnitudes in each lake.Item Effects of Local Weather Variation on Water-column Stratification and Hypoxia in the Western, Sandusky, and Central Basins of Lake Erie(MDPI, 2017-04) Perello, Melanie M.; Kane, Douglas D.; Golnick, Phoenix; Hughes, Maya C.; Thomas, Matt A.; Conroy, Joseph D.; Department of Earth Sciences, School of ScienceHypoxia, low dissolved oxygen (DO) concentrations (<2 mg/L), has been a major issue in Lake Erie for decades. While much emphasis has been placed on biological factors, particularly algal blooms, contributing to hypolimnetic oxygen depletion, there has been little focus on the role of weather. For this study, we monitored water temperature and DO concentrations at sites in the western, central, and Sandusky basins in Lake Erie during June and July 2010–2012. We then compared trends in stratification and DO concentrations to weather patterns during that period. We found that during those three years, there was significant variation in weather patterns, particularly decreased ice coverage and increased storm events in 2012. These weather patterns corresponded to 2012 having the warmest water temperatures, some of the lowest DO concentrations, and a deeper and thinner hypolimnion (especially in the central basin) than the previous years. We found a relationship between weather and hypoxia, providing further evidence for why these basins are susceptible to low DO conditions during summer months. The role of weather in hypoxia is another indication that the lake is vulnerable to effects of climate change and should be considered in management strategies.