- Browse by Subject
Browsing by Subject "greenhouse gas emissions"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Biochar as a negative emission technology: A synthesis of field research on greenhouse gas emissions(Wiley, 2023-07) Shrestha, Raj K.; Jacinthe, Pierre-Andre; Lal, Rattan; Lorenz, Klaus; Singh, Maninder P.; Demyan, Scott M.; Ren, Wei; Lindsey, Laura E.; Earth and Environmental Sciences, School of ScienceBiochar is one of the few nature-based technologies with potential to help achieve net-zero emissions agriculture. Such an outcome would involve the mitigation of greenhouse gas (GHG) emission from agroecosystems and optimization of soil organic carbon sequestration. Interest in biochar application is heightened by its several co-benefits. Several reviews summarized past investigations on biochar, but these reviews mostly included laboratory, greenhouse, and mesocosm experiments. A synthesis of field studies is lacking, especially from a climate change mitigation standpoint. Our objectives are to (1) synthesize advances in field-based studies that have examined the GHG mitigation capacity of soil application of biochar and (2) identify limitations of the technology and research priorities. Field studies, published before 2022, were reviewed. Biochar has variable effects on GHG emissions, ranging from decrease, increase, to no change. Across studies, biochar reduced emissions of nitrous oxide (N2O) by 18% and methane (CH4) by 3% but increased carbon dioxide (CO2) by 1.9%. When biochar was combined with N-fertilizer, it reduced CO2, CH4, and N2O emissions in 61%, 64%, and 84% of the observations, and biochar plus other amendments reduced emissions in 78%, 92%, and 85% of the observations, respectively. Biochar has shown potential to reduce GHG emissions from soils, but long-term studies are needed to address discrepancies in emissions and identify best practices (rate, depth, and frequency) of biochar application to agricultural soils.Item The effects of uncertainty under a cap-and-trade policy on afforestation in the United States(2013-10-30) Dumortier, JeromeTo combat climate change, cap-and-trade policies have been proposed and implemented in countries around the world. The stochastic carbon price that results from a cap-and-trade policy makes investment decisions in carbon mitigating and sequestering practices more complex. This letter illustrates the consequence of uncertainty by analyzing forest carbon offset credits under a potential cap-and-trade policy in the United States. The effects of uncertainty on afforestation, carbon sequestration, cropland allocation, and commodity prices using a real option framework are assessed. When compared with deterministic models, less land gets converted from cropland to forestry over the projection period of 40 years because landowners find it optimal to wait before changing land-use to gain more information about the carbon price evolution. The simulation shows that most afforestation occurs in the south and the northeast with almost no conversion in the Corn Belt. The lesson for policy makers is that under carbon price uncertainty, lower afforestation and carbon sequestration takes place. To foster afforestation, mechanisms are necessary to reduce uncertainty at the expense of higher commodity prices.Item Impact of different bioenergy crops on area allocation and cellulosic ethanol feedstock mix.(2013-04) Dumortier, Jerome; Hayes, Dermot J.; Carriquiry, Miguel; Dong, Fengxia; Du, Xiaodong; Elobeid, Amani; Fabiosa, Jacinto F.; Martin, Pamela A.; Mulik, Kranti